$varphi$-CONNES MODULE AMENABILITY OF DUAL BANACH ALGEBRAS

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 327

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAS-8-1_007

تاریخ نمایه سازی: 5 شهریور 1399

چکیده مقاله:

In this paper we define $varphi$-Connes module amenability of a dual Banach algebra $mathcal{A}$ where $varphi$ is a bounded $w_{k^*}$-module homomorphism from $mathcal{A}$ to $mathcal{A}$. We are mainly concerned with the study of $varphi$-module normal virtual diagonals. We show that if $S$ is a weakly cancellative inverse semigroup with subsemigroup $E$ of idempotents, $chi$ is a bounded $w_{k^*}$-module homomorphism from $l^1(S)$ to $l^1(S)$ and $l^1(S)$ as a Banach module over $l^1(E)$ is $chi$-Connes module amenable, then it has a $chi$-module normal virtual diagonal. In the case $chi=id$, the converse holds

نویسندگان

A. Ghaffari

Department of Mathematics, University of Semnan, P.O. Box ۳۵۱۹۵-۳۶۳, Semnan, Iran.

S. Javadi Syahkale

Faculty of Engineering- East Guilan, University of Guilan, P.O. Box ۴۴۸۹۱-۶۳۱۵۷, Rudsar, Iran.

E. Tamimi

Department of Mathematics, University of Semnan, P.O. Box ۳۵۱۹۵-۳۶۳, Semnan, Iran.