ω-NARROWNESS AND RESOLVABILITY OF TOPOLOGICAL GENERALIZED GROUPS
محل انتشار: مجله ساختارهای جبری، دوره: 8، شماره: 1
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 207
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAS-8-1_003
تاریخ نمایه سازی: 5 شهریور 1399
چکیده مقاله:
Abstract. A topological group H is called ω -narrow if for every neighbourhood V of it’s identity element there exists a countable set A such that V A = H = AV. A semigroup G is called a generalized group if for any x ∈ G there exists a unique element e(x) ∈ G such that xe(x) = e(x)x = x and for every x ∈ G there exists x − 1 ∈ G such that x − 1x = xx − 1 = e(x). Also let G be a topological space and the operation and inversion mapping are continuous, then G is called a topological generalized group. If {e(x) | x ∈ G} is countable and for any a ∈ G, {x ∈ G|e(x) = e(a)} is an ω-narrow topological group, then G is called an ω-narrow topological generalized group. In this paper, ω-narrow and resolvable topological generalized groups are introduced and studied
کلیدواژه ها:
ω-narrow topological generalized group ، Resolvable topological generalizad group ، Precompact topological generalized group ، Invariance number
نویسندگان
M. R. Ahmadi Zand
Department of Mathematics, Yazd University, P.O. Box ۸۹۱۹۵ - ۷۴۱, Yazd, Iran.
S. Rostami
Department of Mathematics, Yazd University, P.O. Box ۸۹۱۹۵ - ۷۴۱, Yazd, Iran.