Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 250

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACM-6-3_024

تاریخ نمایه سازی: 11 تیر 1399

چکیده مقاله:

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering the modified Caputo-Fabrizio fractional derivative and the analogous modifications for the Atangana-Baleanu fractional derivative with non-singular Mittag-Leffler kernel in order to satisfy the initial conditions for some fractional differential equations.

کلیدواژه ها:

Variational iteration method ، Fractional calculus ، Laplace transform ، Modified Caputo-Fabrizio fractional derivative ، Modified Atangana-Baleanu fractional derivative

نویسندگان

Huitzilín Yépez-Martínez

Universidad Autónoma de la Ciudad de México, Prolongación San Isidro ۱۵۱, Col. San Lorenzo Tezonco, Del. Iztapalapa, C.P. ۰۹۷۹۰ México D.F., México

José Francisco Gómez-Aguilar

Departamento de Ingeniería Electrónica, CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. ۶۲۴۹۰, Cuernavaca Morelos, México

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of ...
  • R. Hilfer. Applications of Fractional Calculus in Physics, World Scientific ...
  • B.J. West, M. Bologna, P. Grigolini. Physics of Fractal Operators, ...
  • K.B. Oldham, J. Spanier. The Fractional Calculus, Academic Press, New ...
  • I. Podlubny. Fractional Differential Equations, Academic Press, New York, 1999. ...
  • D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo. Fractional calculus ...
  • G-C. Wu, D. Baleanu. Variational iteration method for fractional calculus ...
  • T.A. Biala, Y.O. Afolabi, O.O. Asim. Laplace variational iteration method ...
  • M. Inokuti, M. Sekine, T. Mura. General use of the ...
  • J.H. He. Approximate analytical solution for seepage flow with fractional ...
  • J.H. He. Variational iteration method - A kind of non-linear ...
  • J.H. He. An elementary introduction to recently developed asymptotic methods ...
  • S. Abbasbandy. A new application of He s variational iteration ...
  • M.A. Noor, S.T. Mohyud-Din. Variational iteration technique for solving higher ...
  • M.A. Noor, S.T. Mohyud-Din. Variational iteration method for solving higher-order ...
  • E. Yusufoglu. The variational iteration method for studying the Klein-Gordon ...
  • A. Yildirim, T. Özis. Solutions of singular IVPs of Lane-Emden ...
  • G.C. Wu. New trends in variational iteration method, Fractional Calculus ...
  • G.C. Wu, K.T. Wu. Variational approach for fractional diffusion-wave equations ...
  • G.C. Wu. Variational iteration method for q-difference equations of second ...
  • T. Allahviranloo, S. Abbasbandy, H. Rouhparvar. The exact solutions of ...
  • H. Jafari, C.M. Khalique. Homotopy perturbation and variational iteration methods ...
  • H. Jafari, M. Saeidy, D. Baleanu. The variational iteration method ...
  • M. Caputo, M. Fabrizio. A new definition of fractional derivative ...
  • J. Lozada, J.J. Nieto. Properties of a new fractional derivative ...
  • H. Yépez-Martínez, J.F. Gómez-Aguilar. A new modified definition of Caputo-Fabrizio ...
  • A. Atangana, D. Baleanu. New Fractional Derivatives with Nonlocal and ...
  • X. Yu, Y. Zhang, H. Guang Sun, C. Zheng. Time ...
  • M. Alquran, I. Jaradat. A novel scheme for solving Caputo ...
  • H.M. Jaradat, I. Jaradat, M. Alquran, M.M.M. Jaradat, Z. Mustafa, ...
  • M. Alquran, H.M. Jaradat, M.I. Syam. Analytical solution of the ...
  • M. Alquran, K. Al-Khaled, S. Sivasundaram, H.M Jaradat. Mathematical and ...
  • I. Jaradat, M. Al-Dolat, K. Al-Zoubi, M. Alquran. Theory and ...
  • M. Senol, M. Alquran, H. Daei Kasmaei. On the comparison ...
  • I. Jaradat, M. Alquran, R. Abdel-Muhsen. An analytical framework of ...
  • I. Jaradata, M. Alquranb, K. Al-Khaled. An analytical study of ...
  • نمایش کامل مراجع