Forecasting epidemic spread of SARS-CoV-2 using ARIMA model (Case study: Iran)

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 368

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GJESM-6-0_001

تاریخ نمایه سازی: 11 خرداد 1399

چکیده مقاله:

Currently, the pandemic caused by a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the most serious issues worldwide. SARS-CoV-2 was first observed in Wuhan, China, on December 31, 2019; this disease has been rapidly spreading worldwide. Iran was the first Middle East country to report a coronavirus death, it has been severely affected. Therefore, it is crucial to forecast the pandemic spread in Iran. This study aims to develop a prediction model for the daily total confirmed cases, total confirmed new cases, total deaths, total new deaths, growth rate in confirmed cases, and growth rate in deaths. The model utilizes SARS-CoV-2 daily data, which are mainly collected from the official website of the European Centre for Disease Prevention and Control from February 20 to May 04, 2020 and other appropriated references. Autoregressive integrated moving average (ARIMA) is employed to forecast the trend of the pandemic spread. The ARIMA model predicts that Iran can easily exhibit an increase in the daily total confirmed cases and the total deaths, while the daily total confirmed new cases, total new deaths, and growth rate in confirmed cases/deaths becomes stable in the near future. This study predicts that Iran can control the SARS-CoV-2 disease in the near future. The ARIMA model can rapidly aid in forecasting patients and rendering a better preparedness plan in Iran.

کلیدواژه ها:

Auto-regressive integrated moving average (ARIMA) ، COVID-19 (Coronavirus) ، Epidemic ، Iran ، prediction

نویسندگان

T.T. Tran

Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City ۷۰۰۰۰۰, Vietnam

L.T. Pham

Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City ۷۰۰۰۰۰, Vietnam|Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi ۱۰۰۰۰۰, Vietnam

Q.X. Ngo

Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City ۷۰۰۰۰۰, Vietnam|Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi ۱۰۰۰۰۰, Vietnam

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdi, M., (2020). Coronavirus disease 2019 (COVID-19) outbreak in Iran; ...
  • Adebiyi, A.A.; Adewumi, A.O.; Ayo, C.K., (2014). Comparison of ARIMA ...
  • Akaike, H., (1974). A new look at the statistical model ...
  • Alsharif, M.H.; Younes, M.K.; Kim, J., (2019). Time series ARIMA ...
  • Box, G.E.P.; Jenkins, G.M., (1976). Time Series Analysis: Forecasting and ...
  • Ceylan, Z., (2020). Estimation of COVID-19 prevalence in Italy, Spain, ...
  • Chintalapudi, N.; Battineni, G.; Amenta, F., (2020). COVID-19 disease outbreak ...
  • Clement, E.P., (2014). Using normalized bayesian information criterion (BIC) to ...
  • ECDC, (2020). European Centre for Disease Prevention and Control. ...
  • Gao, Y.; Zhang, Z.; Yao, W.; Ying, Q.; Long, C.; ...
  • Hassan, S.; Sheikh, F.N.; Jamal, S.; Ezeh, J.K.; Akhtar, A., ...
  • Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; ...
  • Khashei, M.; Bijari, M.; Ardali, G.A.R., (2009). Improvement of auto-regressive ...
  • Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J., (2020). The ...
  • Ljung, G.; Box, G.E.P., (1978). On a measure of lack ...
  • Meyler, A.; Kenny, G.; Quinn, T., (1998). Forecasting Irish Inflation ...
  • MHME, (2020). 2020 coronavirus pandemic in Iran. Ministry of Health ...
  • Moftakhar, L.; Seif, M., (2020). The Exponentially Increasing Rate of ...
  • Moftakhar, L.; Seif, M.; Safe, M.S., (2020). Exponentially Increasing Trend ...
  • Mohamad, A., (2012). Finding the Best ARIMA Model to Forecast ...
  • Patle, G.T.; Singh, D.K.; Sarangi, A.; Rai, A.; Khanna, M.; ...
  • Raoofi, A.; Takian, A.; Sari, A.A.; Olyaeemanesh, A.; Haghighi, H.; ...
  • Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; ...
  • Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R., ...
  • Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; ...
  • Sun, H.; Koch, M., (2001). Case study: analysis and forecasting ...
  • Tran, Q.N.; Arabnia, H., (2015). Emerging trends in computational biology, ...
  • WHO, (2020a). World Health Organization website. ...
  • WHO, (2020b). World Health Organization website. ...
  • WHO, (2020c). Coronavirus disease 2019 (COVID-19) situation Report–95. ...
  • Worldometers, (2020). Countries where COVID-19 has spread. ...
  • Xu, X.; Yu, C.; Qu, J.; Zhang, L.; Jiang, S.; ...
  • Zhang, G.; Patuwo, B.E.; Hu, M.Y., (1998). Forecasting with artificial ...
  • نمایش کامل مراجع