A New Bi-objective Mathematical Model to Optimize Reliability and Cost of Aggregate Production Planning System in a Paper and Wood Company
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 603
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOIE-13-1_007
تاریخ نمایه سازی: 3 اردیبهشت 1399
چکیده مقاله:
In this research, a bi-objective model is developed to deal with a supply chain including multiple suppliers, multiple manufacturers, and multiple customers, addressing a multi-site, multi-period, multi-product aggregate production planning (APP) problem. This bi-objective model aims to minimize the total cost of supply chain including inventory costs, manufacturing costs, work force costs, hiring, and firing costs, and maximize the minimum of suppliers and producers reliability by the considering probabilistic lead times, to improve the performance of the system and achieve a more reliable production plan. To solve the model in small sizes, a ε-constraint method is used. A numerical example utilizing the real data from a paper and wood industry is designed and the model performance is assessed. With regard to the fact that the proposed bi-objective model is NP-Hard, for large-scale problems one multi-objective harmony search algorithm is used and its results are compared with the NSGA-II algorithm. The results demonstrate the capability and efficiency of the proposed algorithm in finding Pareto solutions.
کلیدواژه ها:
نویسندگان
Mohammad Ramyar
Department of Industrial Engineering, College of Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
Esmaeil Mehdizadeh
Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
Seyyed Mohammad Hadji Molana
Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :