Multi-Objective Optimization of Loading Paths for Double-Layered Tube Hydroforming using Finite Element Analysis
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 384
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ADMTL-12-1_006
تاریخ نمایه سازی: 27 فروردین 1399
چکیده مقاله:
One of the most important studies in tube hydroforming process is optimization of loading paths. The primary purpose of this research is to maximize formability by detecting the optimal forming parameters. The most significant settings in the prosperity of tube hydroforming process, are internal pressure and end axial feed (i.e., load path). In this paper, a finite element analysis was performed for a double-layered tube hydroforming process using the ABAQUS/Explicit software. Then, the finite element model has been verified with published experimental data. Using design of experiments (DOE) working with the Taguchi method, 32 loading paths are designed for optimization. All 32 loading paths are modelled using the finite element method in ABAQUS/Explicit and the magnitudes of bulge height and the total thickness of tubes at the branch tip are obtained in each loading path. The regression analysis is carried out to estimate the tubes formability and obtain objective functions that are bulge height and the total thickness of tubes at the protrusion peak as functions of loading parameters (internal pressure and axial feed). For solving the multi-objective optimization problem, the non-dominated sorting genetic algorithm II (NSGA-II) is utilized and the optimum results were obtained from the Pareto optimal front. Finally, the optimized loading path was applied to the finite element model and better formability (3.4% increase in the bulge height) has been achieved in the results.
کلیدواژه ها:
نویسندگان
Hamed Ebrahimi Keshmarzi
School of Mechanical Engineering, Iran University of Science and Technology, Iran
Ramin Hashemi
School of Mechanical Engineering, Iran University of Science and Technology, Iran
Reza Madoliat
School of Mechanical Engineering, Iran University of Science and Technology, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :