ترکیب سرویس های ابری با یادگیری میزان رضایت کاربر با استفاده از الگوریتم های بهینه یابی آشوب گونه تجمع ذرات و ژنتیک

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 463

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ISCELEC03_051

تاریخ نمایه سازی: 14 فروردین 1399

چکیده مقاله:

هدف از مطالعه حاضر ارائه یک چارچوب جدید انتخاب بخش های بهینه قابل دسترس در سیستم ابر با استفاده از یادگیری میزان رضایت کاربر با انتخاب یک سرویس بهینه است که از میزان شایستگی خوبی برخوردار باشد. الگوریتم پیشنهادی با پارامترهای مختلف پیاده سازی شد. نتایج حاصل از کار، با الگوریتم های ژنتیک و PSO مقایسه گردید. نتایج نشان داد که زمان پاسخ الگوریتم PSO با رویکرد تئوری آشوب در مقایسه با الگوریتم ژنتیک و PSO کمتر است و از پایداری و همگرایی خوبی برخوردار است و می توان نتیجه گرفت که جواب به دست آمده از الگوریتم پیشنهادی، می تواند جواب بهینه باشد

کلیدواژه ها:

سیستم ابر ، ترکیب سرویس های ابری ، یادگیری میزان رضایت کاربر ، الگوریتم PSO ، نظریه آشوب

نویسندگان

مرضیه علی پورثابت رای

دانشجو کارشناسی ارشد مهندسی کامپیوتر، دانشکده مهندسی، واحد الکترونیک تهران، دانشگاه آزاد اسلامی، تهران، ایران

محمود دی پیر

استادیار گروه مهندسی کامپیوتر، دانشکده مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران