Image Noise Reduction Using a Wavelet Thresholding Method Based on Fuzzy Clustering
محل انتشار: چهارمین کنفرانس ماشین بینایی و پردازش تصویر
سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,163
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP04_033
تاریخ نمایه سازی: 21 دی 1386
چکیده مقاله:
In this paper, a new method is presented for reducing the image noise by wavelet transform. Wavelet thresholding is a standard method of reducing the signal noise in which the small coefficients are replace by zero and the big ones are either remain unchanged (hard thresholding) or reduced to the level of the threshold (soft thresholding). In the proposed method, for the first time, fuzzy kmeans clustering in each sub-band is used for choosing the threshold in soft thresholding method. Using fuzzy clustering, the coefficients in each sub-band are divided into three clusters, and then the noise cluster is obtained regarding the decomposition level and the maximum coefficient in each level. The upper and lower limit of the noisy cluster is an appropriate threshold for soft thresholding. This method is more efficient for r educing Gaussian and salt and pepper noises in comparison to methods that model the noise. In other words, the proposed method is not dependent on statistical noise or data driven is the manifest feature of the proposed approach relative to other methods and the threshold is selected based on type of images without each assumption on probability density function of noise. The experiments performed on basis images, show a higher performance of the proposed algorithm relative to the statistical method and the generalized cross validation method.
کلیدواژه ها:
نویسندگان
Hadi Sadoghi Yazdi
Faculty of Engineering, Tarbiat Moallem University of Sabzevar, Sabzevar, Iran
Mojtaba Lotfizad
Department of Electrical Engineering, Tarbiat Modarres University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :