سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Anxiety and Depression Detection using Statistical Features

سال انتشار: 1396
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 677

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CSCG02_154

تاریخ نمایه سازی: 7 اسفند 1396

چکیده مقاله Anxiety and Depression Detection using Statistical Features

Human action is caused by the neuron activities. The distributed signals from throughout the scalp, due by these activities,can be recorded and analyzed subsequently. Concerning, receiving and recording brain signals can be performed by Electroencephalogram (EEG) recorder. The objective of the present study is to detect the anxiety and depression disorders using EEG signals. In order to get this purpose, some statistical features are extracted using wavelet coefficients in timefrequency domain. Experimental results using 50 subjects is achieved by 96 percent of accuracy to detect disorder

کلیدواژه های Anxiety and Depression Detection using Statistical Features:

نویسندگان مقاله Anxiety and Depression Detection using Statistical Features

Tahereh Najafi

Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Guilan

Babak Abad Fomani

Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Guilan

Asadollah Shahbahrami

Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Guilan