Group LASSO for high-dimensional partially linear errors-invariables models

سال انتشار: 1396
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 679

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CSCG02_078

تاریخ نمایه سازی: 7 اسفند 1396

چکیده مقاله:

This article focuses on group variable selection for high dimensional partially linear models when the covariates are measured with additive errors. We apply the group least absolute and shrinkage operator (LASSO) penalty to simultaneously estimate and select significant variables. Finite sample performance of the proposed procedure is assessed by simulation studies, where we compare the naive and bias-corrected group LASSO estimators

نویسندگان

m kazemi

Department of Statistics, Shahrood University of Technology, Shahrood, Iran

d shahsavani

Department of Statistics, Shahrood University of Technology, Shahrood, Iran

m arashi

Department of Statistics, Shahrood University of Technology, Shahrood, Iran