Application of Machine Learning Techniques in Sepsis Mortality Prediction

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 241

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AISOFT02_041

تاریخ نمایه سازی: 17 فروردین 1404

چکیده مقاله:

Sepsis, a life-threatening condition resulting from an infection, remains one of the leading causes of mortality in critically ill patients. Early identification of high-risk patients is essential for timely intervention, which can significantly improve survival rates. This study explores the use of machine learning (ML) models, specifically XGBoost, Random Forest, and a Stacked ensemble model, for predicting sepsis-related mortality using the MIMIC-III critical care database. The research compares the performance of these models based on accuracy and AUC-ROC scores. After hyperparameter tuning, XGBoost achieved the highest performance with an AUC of ۸۳.۹۶% and an accuracy of ۸۵.۲۹%. This paper demonstrates the potential of machine learning models as effective tools for supporting clinical decisions in sepsis mortality prediction.

نویسندگان

Mahyar Mohammadian

Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran

Parsa Haghighatgoo

Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran

Salar Rahnama

Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran

Hosein Khajeh

Department of Computer Engineering, Yasuj University, Yasuj, Iran

Somayeh Afrasiabi

Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran