Application of Machine Learning Techniques in Sepsis Mortality Prediction
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 241
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AISOFT02_041
تاریخ نمایه سازی: 17 فروردین 1404
چکیده مقاله:
Sepsis, a life-threatening condition resulting from an infection, remains one of the leading causes of mortality in critically ill patients. Early identification of high-risk patients is essential for timely intervention, which can significantly improve survival rates. This study explores the use of machine learning (ML) models, specifically XGBoost, Random Forest, and a Stacked ensemble model, for predicting sepsis-related mortality using the MIMIC-III critical care database. The research compares the performance of these models based on accuracy and AUC-ROC scores. After hyperparameter tuning, XGBoost achieved the highest performance with an AUC of ۸۳.۹۶% and an accuracy of ۸۵.۲۹%. This paper demonstrates the potential of machine learning models as effective tools for supporting clinical decisions in sepsis mortality prediction.
کلیدواژه ها:
نویسندگان
Mahyar Mohammadian
Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran
Parsa Haghighatgoo
Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran
Salar Rahnama
Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran
Hosein Khajeh
Department of Computer Engineering, Yasuj University, Yasuj, Iran
Somayeh Afrasiabi
Department of CSE&IT, School of ECE, Shiraz University, Shiraz, Iran