Perdition of Smoking in Young Adults Based on Machine Learning Methods:A System Medicine Approach

  • سال انتشار: 1400
  • محل انتشار: چهارمین کنفرانس زیست شناسی سامانه های ایران
  • کد COI اختصاصی: ICSB04_044
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 280
دانلود فایل این مقاله

نویسندگان

Elahe mousavi

Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.;

hamidreza Roohafza

Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran;

Mohammadreza Sehhati

Department of Bioelectric and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;

Ahmad Vaez

Department of Bioinformatics, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

چکیده

Tobacco use is one of the main leading cause of preventable death. Numerous studies have shown that intervention to postpone or prevent tobacco use can be an effective strategy to prevent smoking (Talluri, Wilkinson, Spitz, & Shete, ۲۰۱۴). Considering the reduced onset age of smoking, this study focused on predicting the usage status of teenage students for further prevention. In this study, we propose a machine learning framework for automatic classification of students to smoker and non-smoker based on questionnaire data. The main set of variables are including psychological (depression and self-efficacy), family, social, attitudinal and belief factors and school policy toward smoking. The results of specificity and negative predictive value of ۹۳% and ۹۸% respectively, show the high performance of Adaboost classifier in predicting and classifying students as smoker or non-smoker. At the next step, using randomized lasso feature selection, the more effective variables for classification were introduced.

کلیدواژه ها

System medicine, Smoking, Classification, Machine learning, Adaboost, Feature Selection

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.