Prediction of gene ontology by deep learning
- سال انتشار: 1400
- محل انتشار: چهارمین کنفرانس زیست شناسی سامانه های ایران
- کد COI اختصاصی: ICSB04_039
- زبان مقاله: انگلیسی
- تعداد مشاهده: 264
نویسندگان
Isfahan University of Technology, Department of Electrical and Computer Enginnering;
Isfahan University of Technology, Department of Electrical and Computer Enginnering;
Isfahan University of Technology, Department of Electrical and Computer Enginnering;
Isfahan University of Medical Sciences, Regenerative Medicine Research Center
چکیده
The prediction of gene functions is a major challenge in biology and bioinformatics. Gene function prediction aims to predict a set of its associated GO terms along with the confidence of the association for a given gene. Existing databases of known gene functions are incomplete and prone to errors and experiments needed to improve these databases are costly. Conventional methods of gene function prediction are linear methods that are not effective in handling data of nonlinear structures. Recently a few studies attempted to incorporate nonlinear techniques into gene function prediction, but there still exists limitations. For example, (Khatri et al. ۲۰۰۵) used truncated singular value decomposition method (tSVD) for GO annotation prediction. In (Žitnik and Blaž. ۲۰۱۵), a method based on matrix factorization presented to predict gene functions with data fusion. In this study, to predict associated GO terms of genes, we proposed a novel method based on using deep neural networks (DNN). First, we find latent representations of genes and GO terms. Then, the similarity between latent representation vectors is measured by cosine function. This similarity is the probability of estimating the relation for a previously-unseen pair (Gene, GO Term).کلیدواژه ها
Gene Function Prediction, Gene Ontology, Latent representation vector, Deep neural networks, Deep learningمقالات مرتبط جدید
- استروئیدها، فواید، خطرات و واقعیت ها
- پاسخ آنزیمهای آنتی اکسیدانی (CAT و SOD) و ظرفیت اکسیداتیو کل (TOS) گوجه فرنگی (Solanum lycopersicum L) به تیمار نانوذرات اکسید روی
- ارزیابی تجمع میکروپلاستیکها در وزغ سبز (Bufotes sitibulus به عنوان شاخص زیستی در چشمه بلاغ استان مرکزی با استفاده از AFM و FTIR
- Strategies for Controlling Future Pandemics Similar to COVID-۱۹: A Systematic Review
- بررسی عملکردی کاربرد پلیمرها و نانوکامپوزیتهای پلیمری در فرآیند ازدیاد برداشت نفت: مروری بر چالشها و چشم اندازها
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.