SPARSE BASED SIMILARITY MEASURE FOR MONO-MODAL IMAGE REGISTRATION

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,004

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICMVIP08_188

تاریخ نمایه سازی: 9 بهمن 1392

چکیده مقاله:

Similarity measure is an important key in image registration.Most traditional intensity-based similarity measures (e.g.,SSD, CC, MI, and CR) assume stationary image and pixel bypixel independence. Hence, perfect image registration cannotbe achieved especially in presence of spatially-varying intensitydistortions and outlier objects that appear in one imagebut not in the other. Here, we suppose that non stationaryintensity distortion (such as Bias field or Outlier) has sparserepresentation in transformation domain. Based on this assumption,the zero norm (ℓ0) of the residual image betweentwo registered images in transform domain is introduced as anew similarity measure in presence of non-stationary intensity.In this paper we replace ℓ0 norm with ℓ1 norm which is apopular sparseness measure. This measure produces accurateregistration results in compare to other similarity measuresuch as SSD, MI and Residual Complexity RC.

کلیدواژه ها:

image registration ، Bias field ، nonstation ary intensity distortion ، outlier ، sparse representation ، sparseness ness

نویسندگان

A Ghaffari

Electrical Engineering Department Sharif University of Technology, Tehran, Iran

E. Fatemizadeh

Electrical Engineering Department Sharif University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • sensing, " IEEE Transac Compressedت [15] D. L. Donoho, tions ...
  • -Landذ' [5] A Ghaffari, R Khorsandi, and E Fatemizadeh, mark ...
  • F Sauer, "Image registration: Enabling technology for image guided surgery, ...
  • B. Zitov and J. Flusser, "Image registration methods: A survey, ...
  • A. Myronenko and Xubo Song, _ Inte nsity-based image registration ...
  • R. Gribonval and S. Lesage, :A survey of sparse com- ...
  • J.-L. Starck, M. Elad, and D.L. Donoho, "Image decom- position ...
  • D. L. Donoho and M. Elad, :Maximal sparsity repre- minimization, ...
  • S. Mallat and , Zhang, "Matching pursuits with time frequency ...
  • S.S. Chen, D.L. Donoho, and M.A. Saunders, :Atomic decomposition by ...
  • I. F. Gorodnitsky and B. D. Rao, "Sparse signal recon- ...
  • G. H. Mohimani, M. _ abaie-Zadeh, and C. Jutten, "Fast ...
  • Aboozar Ghaffari, Massoud B abaie-Zadeh, and Chris- tian Jutten, "Sparse ...
  • C. J. Hillar and F. T. Sommer, "Ramsey theory reveals ...
  • C. Hayes D. L. G. Hill M. O. Leach D. ...
  • Shu Liao and A.C.S. Chung, :Feature based nonrigid brain mr ...
  • Dinggang Shen and C. Davatzikos, _ hierar- chical attribue matching ...
  • Abdollah Ghanbari, Reza Abbasi-Asl, Aboozar Ghaf- fari, and Emad Fatemizadeh, ...
  • Alexis Roche, Grgoire Malandain, Xavier Pennec, and Nicholas Ayache, _ ...
  • F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. ...
  • M.M. Fouad, R.M. Dansereau, and A.D. Whitehead, "Image registration under ...
  • M. Holden D. L. G. Hill, P. G. Batchelor and ...
  • C. Studholme, C. Drapaca, B. Iordanova, and V. Car- denas, ...
  • D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, and P. ...
  • نمایش کامل مراجع