SPARSE BASED SIMILARITY MEASURE FOR MONO-MODAL IMAGE REGISTRATION
محل انتشار: هشتمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,004
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP08_188
تاریخ نمایه سازی: 9 بهمن 1392
چکیده مقاله:
Similarity measure is an important key in image registration.Most traditional intensity-based similarity measures (e.g.,SSD, CC, MI, and CR) assume stationary image and pixel bypixel independence. Hence, perfect image registration cannotbe achieved especially in presence of spatially-varying intensitydistortions and outlier objects that appear in one imagebut not in the other. Here, we suppose that non stationaryintensity distortion (such as Bias field or Outlier) has sparserepresentation in transformation domain. Based on this assumption,the zero norm (ℓ0) of the residual image betweentwo registered images in transform domain is introduced as anew similarity measure in presence of non-stationary intensity.In this paper we replace ℓ0 norm with ℓ1 norm which is apopular sparseness measure. This measure produces accurateregistration results in compare to other similarity measuresuch as SSD, MI and Residual Complexity RC.
کلیدواژه ها:
image registration ، Bias field ، nonstation ary intensity distortion ، outlier ، sparse representation ، sparseness ness
نویسندگان
A Ghaffari
Electrical Engineering Department Sharif University of Technology, Tehran, Iran
E. Fatemizadeh
Electrical Engineering Department Sharif University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :