Classification of Subcellular Location Patterns in Fluorescence Microscope Images Based on Modified Threshold Adjacency Statistics
محل انتشار: ششمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,151
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP06_026
تاریخ نمایه سازی: 20 فروردین 1390
چکیده مقاله:
The ongoing biotechnology revolution promises a complete understanding of the mechanisms by which cells and tissues carry out their functions. As proteins are integral components of cell function, it is critical to understand their properties such as structure and localization. The study of protein subcellular localization (PSL) is important for elucidating protein functions involved in various cellular processes. The subcellular location of proteins is most often determined by visual interpretation of fluorescence microscope images, but in recent years, to perform highresolution, high-throughput analysis of ten thousands of expressed proteins for the many cell types and cellular conditions under which they may be found creates, automated methods that are needed. In this review, we use a novel method that determines an improved features set, that distinguish subcellular patterns with high accuracy and high speed. This method based on modified threshold adjacency statistics (MTAS), the essence which is to threshold the images. Previous work that uses threshold adjacency statistics (TAS), introduces a simple set of Subcellular Location Features (SLF) which are computed by counting the number of threshold pixels adjacent.
کلیدواژه ها:
نویسندگان
Fateme Mostajer Kheirkhah
M.Sc student of Electronic engineering, Islamic Azad University, Tabriz Branch
Siamak Haghipour
Biomedical engineering Prof. of Islamic Azad University, Tabriz Branch
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :