Graph BasedFeature Selection Using Symmetrical Uncertainty in Microarray Dataset
- سال انتشار: 1398
- محل انتشار: فصلنامه سیستم های اطلاعاتی و مخابرات، دوره: 7، شماره: 1
- کد COI اختصاصی: JR_JIST-7-1_006
- زبان مقاله: انگلیسی
- تعداد مشاهده: 787
نویسندگان
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Department of Computer Engineering, Alzahra University, Tehran, Iran
Department of Control Engineering, K. N. Toosi University. Tehran, Iran
چکیده
Microarray data using small samples and thousands of genes provides a difficult challenge for researchers. Utilizing gene selection helps to select the most relevant genes from original dataset with the purpose of dimensionality reduction of microarray data as well as increasing the prediction performance. In this paper, a new gene selection method based on community detection technique and ranking the best genes, is proposed. In order to select the best genes, Symmetric Uncertainty calculates the similarity between two genes, and between gene and its class label. In the first phase, this leads to representation of search space in form of graph. In the second phase, the proposed graph is divided into several clusters, using community detection algorithm. Finally, after ranking the genes, the ones with maximum ranks are selected as the best genes. This approach is a supervised/unsupervised filter-based gene selection method, which not only minimizes the redundancy between genes, but also maximizes the relevance of genes and their class labels. Performance of the proposed method is compared with twelve well-known unsupervised/supervised gene selection approaches over twelve microarray datasets using four classifiers including SVM, DT, NB and k-NN. The results illustrate the advantages of the proposed approach.کلیدواژه ها
Gene selection; Microarray data; Filter method; Graph-based clustering; Feature Selectionمقالات مرتبط جدید
- الگوی مطلوب مدیریت حریم خصوصی در رسانه و فضای مجازی
- حکمت خیال در هنر ایران و تاثیر نظریهی عالم مثال سهروردی بر نگارگری عرفانی دوره ی صفویه مطالعه ی موردی نگاره حکایت بلقیس و سلیمان (ع) در هفت اورنگ جامی
- مطالعه تطبیقی زیبایی شناسی در هنر اسلامی و هنر جهانی
- تحلیل آثار عکاسی ناصرالدین شاه بر اساس نظریه ترامتنیت ژرار ژنت
- تحلیل نگاره معراج پیامبر (ص) اثر سلطان محمد تبریزی بر اساس نظریه ترامتنیت ژرار ژنت
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.