Deep Generative Convolutional Neural Network based Wind Turbines Condition Monitoring

  • سال انتشار: 1397
  • محل انتشار: ششمین کنفرانس سالیانه انرژی پاک
  • کد COI اختصاصی: CLEANENERGY06_048
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 751
دانلود فایل این مقاله

نویسندگان

Benyamin Parang

School of Electrical and Computer Engineering Shiraz University Shiraz, Iran

Shahabodin Afrasiabi

School of Electrical and Computer Engineering Shiraz University Shiraz, Iran

Mousa Afrasiabi

School of Electrical and Computer Engineering Shiraz University Shiraz, Iran

Mohammad Mohammadi

School of Electrical and Computer Engineering Shiraz University Shiraz, Iran

Mohammad Rastegar

School of Electrical and Computer Engineering Shiraz University Shiraz, Iran

چکیده

Condition monitoring of wind turbines (WTs) has attracted attention due to fast development of WTs. The inherent intermittence of wind energy and being located in remote area makes it difficult to design proper fault diagnosing method for WTs. To address this issue, we proposed a two block deep learning based method in this paper, which encapsulates two feature extraction and classification in an end-to-end architecture. In the designed method, we used generative adversarial network (GAN) as the feature extraction block and convolutional neural network (CNN) as the fault classifier block. The simulations are fulfilled based on real-data from a 3 MGW WT in Ireland, which is obtained from supervisory control and data acquisition system (SCADA). The results demonstrate that the proposed method is a proper alternative for fault classification of WTs. To show the superiority of the proposed method, the results are compared with the results of applying support vector machine (SVM) and feed-forward neural network (FFNN).

کلیدواژه ها

Wind turbine fault classification, Generative adversarial network (GAN), Convolutional neural network (CNN), Deep learning, Condition and monitoring of WT.

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.