پیش بینی قیمت روزانه نفت خام برنت با ترکیب روش های آنالیز مولفه های اصلی و رگرسیون بردار پشتیبان

  • سال انتشار: 1396
  • محل انتشار: فصلنامه پژوهشنامه اقتصاد انرژی ایران، دوره: 7، شماره: 25
  • کد COI اختصاصی: JR_IEER-7-25_002
  • زبان مقاله: فارسی
  • تعداد مشاهده: 475
دانلود فایل این مقاله

نویسندگان

الهام حاجی کرم

دانشگاه آزاد اسلامی واحد علوم و تحقیقات

رویا دارابی

گروه حسابداری دانشگاه آزاد اسلامی واحد تهران جنوب

چکیده

پیش­بینی روند قیمت نفت خام و نوسانات آن همواره یکی از چالش­های پیش روی معامله­گران در بازارهای نفتی بوده است. این مقاله به پیش­بینی قیمت روزانه نفت خام برنت با یک مدل ترکیبی پیشنهادی می­پردازد. نمونه آماری قیمت روزانه نفت خام برنت دریای شمال از ژوئیه سال 2008 تا ژوئیه سال 2016 می­باشد که از میان کل قیمت­های روزانه نفت در تمام بازارهای نفتی انتخاب شده است. در این پژوهش، برای پیش­بینی مدلی از ترکیب روش­های آماری و هوش مصنوعی (PCA-SVR) ارائه می­شود. با توجه به اثبات برتری دقت پیش­بینی مدل رگرسیون بردار پشتیبان (SVR)[1] نسبت به سایر روش­های پیش­بینی در مطالعات گذشته هدف اصلی در این پژوهش، بهبود پیش­بینی رگرسیون بردار پشتیبان با استفاده از پیش­پردازش اولیه داده­ها به وسیله آنالیز مولفه­های اصلی (PCA)[2] است. جهت انجام پژوهش پس از انجام آزمون مانایی، با استفاده از آنالیز مولفه­های اصلی متغیرهای ورودی را به مولفه­های اصلی که کل پراکندگی داده­ها را پوشش می­دهد تبدیل نموده و به عنوان ورودی برای مدل پیش­بینی در نظر گرفتیم. سپس با استفاده از مدل رگرسیون بردار پشتیبان و شبیه­سازی آن در نرم­افزار متلب اقدام به پیش­بینی قیمت روزانه نفت خام برنت نمودیم. به منظور مقایسه عملکرد مدل­های SVR و PCA-SVR از آزمون مقایسات زوجی استفاده نمودیم. نتیجه پژوهش بیانگر این موضوع بود که پیش­پردازش اولیه به وسیله آنالیز مولفه­های اصلی بر روی داده­ها باعث کاهش خطای مدل پیشنهادی گردیده است. [1]. Support Vector Regression [2]. Principal Components Analyses

کلیدواژه ها

آنالیز مولفه های اصلی, رگرسیون بردار پشتیبان, مدل ترکیبی, نفت خام

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.