Depth estimation of gravity anomalies using Artificial Neural Networks

  • سال انتشار: 1383
  • محل انتشار: کنفرانس مهندسی معدن ایران
  • کد COI اختصاصی: IMEC01_083
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 3485
دانلود فایل این مقاله

نویسندگان

Alireza Hajian

Student of MSc. in Geophysics Institute of Tehran University

Vahid Ebrahimzadeh Ardestani

DR. of Geophysics in Geophysics Institute of Tehran University

Zahra Ziaee

MSc. of computer ,IT head of Industries and Mines ministry

چکیده

The method of Artificial Neural Networks is used as a suitable tool for intelligent interpretation of gravity data in exploration; in this paper, we have designed a Hopfield Neural Network to estimate the gravity source depth. To calculate the weights and biasing values of the network first the network is designed for the models near to sphere or cylinder and these weights are fixed and the network will rotate so that finally get to its stable state . In this state the energy of the network will be in its minimum value. Thus the network will run for some different initial values of depths and the one which will have the least final energy will finally the depth of gravity source. It is very important to test the designed network we fed the noisy data to it and observed its behavior. This Artificial Neural network was used to estimate the depth of a qanat in north entrance of the Geophysics Institute of Tehran University and the result was very near to the real value of depth.

کلیدواژه ها

Artificial neural network, Gravity Exploration, Depth estimation,Hopefield

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.