Safety Assessment on Merge and Diverge Areas using Fuzzy Inference System,Artificial Neural Network, and Particle Swarm Optimization

  • سال انتشار: 1396
  • محل انتشار: مجله پیشرفت تحقیقات محاسباتی در علوم و مهندسی کاربردی، دوره: 3، شماره: 1
  • کد COI اختصاصی: JR_CRPASE-3-1_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 721
دانلود فایل این مقاله

نویسندگان

Hamid Behbahani

Department of Civil Engineering, Iran University of Science and Technology, P.O. Box ۱۳۱۱۴-۱۶۸۴۶, Tehran, Iran

Sayyed Mohsen Hosseini

Department of Civil Engineering, Iran University of Science and Technology, P.O. Box ۱۳۱۱۴-۱۶۸۴۶, Tehran, Iran

Alireza Taherkhani

Department of Civil Engineering, Iran University of Science and Technology, P.O. Box ۱۳۱۱۴-۱۶۸۴۶, Tehran, Iran

Hemin Asadi

Department of Civil Engineering, Iran University of Science and Technology, P.O. Box ۱۳۱۱۴-۱۶۸۴۶, Tehran, Iran

چکیده

In this paper, it was attempted to predict safety level of merge and diverge areas by simulating 2880 different types of them with different geometry and traffic characteristics. After analyzing trajectory data, safety level was obtained for each merge and diverge area by defining an index called No-Collision Potential Index . This index depends on the number and severity of near-crash events and could be determined by combining four traffic conflict techniques using fuzzy inference system. A database containing geometric and traffic characteristics as variables and safety level as function was generated after determination of safety level for all types of merge and diverge areas. By using this database, two models were developed to predict safety level of the two areas, one by artificial neural network and another using particle swarm optimization algorithm. Models were tested, validated and their errors were checked. The results indicated good accuracy of similarity between the results of models in predicting safety level of merge and diverge areas and that of simulations. Five merge areas and five diverge areas as case studies were surveyed to verify the models. Statistical analysis showed that there was no significant difference between means of safety level predicted by models and safety level obtained from case studies.

کلیدواژه ها

Safety level,Near-crash events,Diverge area,Merge area,Fuzzy inference system

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.