Brain Tumor Image processing: A glance to recent studies

  • سال انتشار: 1395
  • محل انتشار: کنفرانس بین المللی مهندسی و علوم کامپیوتر
  • کد COI اختصاصی: ICCSE01_167
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 638
دانلود فایل این مقاله

نویسندگان

Mahsa Aminian Dehkordi

Faculty of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran

Saeed Ayat

Faculty of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran Department of Computer Engineering, Payame Noor University, Najafabad, Iran

چکیده

Image processing has been focused in several studies in brain tumor detection from the brain Magnetic Resonance Imaging(MRI) in order to improve accuracy of experts manual inspection. This work is an uptodate concise review of learning machine techniquesin order to analysis their strengths and weaknesses for detection of malignant tissues and improvement of experts diagnostic capability.Many methods were discussed as follows: Threshold-based (Global/Local) , Region-based (Region-growing , Watershed) , Pixel-based(Fuzzy C Means, Markov Random Fields) , Model-based (Parametric Deformable Models, Level Sets ) , The atlas-based segmentation , KNNtechniques , Neural network, K-mean algorithms. Also , hybrid techniques were proposed including Combination of K-means and fuzzyc-means , FKSRG , Multi-region + multi-reference framework ,Generative probabilistic model + spatial regularization , probabilistic modelplus localization , Non-rigid registration / atlas/ MRF , SVM / CRF , Decision Forests / tissue-specific Gaussian mixture models , SVM /Kernel feature selection , etc. We found that the machine learning approaches integrated with other approaches can offer a higher detectionsuccess rate , accuracy and sensitivity rates. But they are time consuming and it is better to improve this matter in the future works.

کلیدواژه ها

Brain tumor, Magnetic Resonance Imaging (MRI), Digital Image Processing, Tumor Detection

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.