Evaporation modeling with multiple linear regression techniques – a review

  • سال انتشار: 1391
  • محل انتشار: مجله علمی مروری، دوره: 1، شماره: 6
  • کد COI اختصاصی: JR_SJR-1-6_001
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 546
دانلود فایل این مقاله

نویسندگان

p.s shirgure

National Research Centre for Citrus, Nagpur, Maharashtra ۴۴۰ ۰۱۰, India.

چکیده

Evaporation is influenced by number of agro-meteorological parameters and one of the integral components of the hydrological cycle and. Usually, estimates of evaporation are needed in a wide array of problems in agriculture, hydrology, agronomy, forestry and land resources planning, such as water balance computation, irrigation management, crop yield forecasting model, river flow forecasting, ecosystem modeling. Irrigation can substantially increase crop yields, but again the scheduling of the water application is usually based on evaporation estimates. Numerous investigators developed models for estimation of evaporation. The interrelated meteorological factors having a major influence on evaporation have been incorporated into various formulae for estimating evaporation. Unfortunately, reliable estimates of evaporation are extremely difficult to obtain because of complex interactions between the components of the land-plant-atmosphere system. In hot climate, the loss of water by evaporation from rivers, canals and open-water bodies is a vital factor as evaporation takes a significant portion of all water supplies. Even in humid areas, evaporation loss is significant, although the cumulative precipitation tends to mask it due to which it is ordinarily not recognized except during rainless period. Therefore, the need for reliable models for quantifying evaporation losses from increasingly scarce water resources is greater than ever before. Accurate estimation of evaporation is fundamental for effective management of water resources. The evaporation models using MLR techniques is discussed her in details.

کلیدواژه ها

Evaporation , Evaporation modeling , Multiple linear regression ,

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.