EOG artifact removal from EEG using a RBF neural network
عنوان مقاله: EOG artifact removal from EEG using a RBF neural network
شناسه ملی مقاله: EOESD01_233
منتشر شده در همایش مهندسی برق و توسعه پایدار با محوریت دستاوردهای نوین در مهندسی برق در سال 1392
شناسه ملی مقاله: EOESD01_233
منتشر شده در همایش مهندسی برق و توسعه پایدار با محوریت دستاوردهای نوین در مهندسی برق در سال 1392
مشخصات نویسندگان مقاله:
Mohammad seifi
Ali akbar kargaran erdechi - MS students, University of hakim Sabzevari, Sabzevar, Iran
Ahmad haji pour - Faculty of Electrical and Computer Engineering, University of hakim sabzevari
خلاصه مقاله:
Mohammad seifi
Ali akbar kargaran erdechi - MS students, University of hakim Sabzevari, Sabzevar, Iran
Ahmad haji pour - Faculty of Electrical and Computer Engineering, University of hakim sabzevari
In this paper, a new adaptive radial-basis function- networks- (RBFN-) based filter for theadaptive noise cancellation (ANC) problem is proposed. The algorithm of structure identificationand parameters adjustment is developed. The proposed RBFN-based filtering approachimplements Takagi-Sugeno-Kang (TSK) fuzzy systems functionally. The RBFN-based filter hasthree major features: (1) No space pre partitioning is needed; (2) No predetermination, such asthe number of RBF neurons (fuzzy rules), must be given; (3) Fast learning speed is achieved.Simulation results demonstrate that the proposed adaptive RBFN-based filter can cancel thenoise successfully and efficiently with a parsimonious structure.
کلمات کلیدی: RBFN,ANC, adaptive filtering
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/252792/