Bidding Strategy in pay as bid markets by Multi- Agent Reinforcement Learning
- سال انتشار: 1392
- محل انتشار: بیست و هشتمین کنفرانس بین المللی برق
- کد COI اختصاصی: PSC28_238
- زبان مقاله: انگلیسی
- تعداد مشاهده: 1134
نویسندگان
Department of Electrical and Computer Engineering University of Tehran, Tehran, Iran
Department of Electrical and Computer Engineering University of Tehran, Tehran, Iran
Department of Electrical and Computer Engineering University of Tehran, Tehran, Iran
چکیده
In a deregulated electricity market, market participants use optimal bidding strategies in order to maximize their individual profits, due to the uncertainty and dynamic of electricity market, players’ optimal bidding strategy is not determined easily. Power markets have two objectives. The first which is the Maximization of their profit and the second is their utilization rate. It is essential for players to identify complex behavior by learning through a continuous exploiting and exploring process. Reinforcement learning is a good way to make a decision in these incomplete information markets. In this paper agent-based simulation is employed to study the incomplete power market operation under pay-as-bid pricing market. The market is considered SFE model that players proposed both bids and powers in their suppliers’ functions. Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a Reinforcement Learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this Paper. In this paper new state-action definition are proposed. The results of proposed state-action method on five bus power systemare compared with different state-action definitions and the superiority of this definition in two different cases is shownکلیدواژه ها
electricity market, Reinforcement learning, pay-asbid pricing market; SFE model, SA-Q-learning algorithmمقالات مرتبط جدید
- استفاده از اینترنت اشیا در بهبود مدیریت بار و افزایش کارایی شبکه های برق
- بهینه سازی توان در سیستم های چند هسته ای با استفاده از یادگیری تقویتی و تخصیص منابع
- بررسی مدارهای مجتمع آنالوگ کم مصرف برای کاربردهای پزشکی
- Physical Layer Security in ۵G Networks Using ArtificialInterference
- یک روش جدید در سیستم های توصیه گر برای پیش بینی سلیقه کاربران با استفاده ازالگوریتم بهینه سازی نهنگ
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.