A Novel Multiple Kernel Learning Approach for Semi-Supervised Clustering

  • سال انتشار: 1392
  • محل انتشار: هشتمین کنفرانس ماشین بینایی و پردازش تصویر ایران
  • کد COI اختصاصی: ICMVIP08_174
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1317
دانلود فایل این مقاله

نویسندگان

T Zare

Signal Processing Research Group Electrical and Computer Engineering Department, Yazd University

M.T Sadeghi

Signal Processing Research Group Electrical and Computer Engineering Department, Yazd University

H.R Abutalebi

Signal Processing Research Group Electrical and Computer Engineering Department, Yazd University

چکیده

Distance metrics are widely used in various machinelearning and pattern recognition algorithms. A main issue inthese algorithms is choosing the proper distance metric. In recentyears, learning an appropriate distance metric has become a veryactive research field. In the kernelised version of distance metriclearning algorithms, the data points are implicitly mapped into ahigher dimensional feature space and the learning process isperformed in the resulted feature space. The performance of thekernel-based methods heavily depends on the chosen kernelfunction. So, selecting an appropriate kernel function and/ortuning its parameter(s) impose significant challenges in suchmethods. The Multiple Kernel Learning theory (MKL) addressesthis problem by learning a linear combination of a number ofpredefined kernels. In this paper, we formulate the MKLproblem in a semi-supervised metric learning framework. In theproposed approach, pairwise similarity constraints are used toadjust the weights of the combined kernels and simultaneouslylearn the appropriate distance metric. Using both synthetic andreal-world datasets, we show that the proposed methodoutperforms some recently introduced semi-supervised metriclearning approaches.

کلیدواژه ها

Distance Metric Learning, Multiple Kernel Learning (MKL), Pairwise similarity constraints, Semi-supervised clustering

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.