Social Network Development Prediction System Using Supervised Classifiers Hybrid Method
- سال انتشار: 1403
- محل انتشار: شانزدهمین کنفرانس بین المللی تحلیل پوششی داده ها و علوم تصمیم گیری
- کد COI اختصاصی: DEA16_135
- زبان مقاله: انگلیسی
- تعداد مشاهده: 77
نویسندگان
Student at Department of Management and Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Student at Department of Management and Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Assistant Professor at Department of Management and Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده
Social networks are a new generation of websites that are in the focus of the users of the global Internet these days. In such networks, predicting the occurrence of links is a basic and fundamental problem that is related to the probability of the existence of a link between two network nodes that are not connected. In this research, in order to predict this issue, the method of combining classifiers and the combined ECOC algorithm has been used. Also, in order to implement the mentioned method, the main clustering algorithm, which is a support vector machine, was executed several times on the data set, and each time only the order of entering the data into the algorithm was changed. With this action, the effect of how the data is placed in the output was considered. At the end, the output for the final evaluation or the output with the most repetition was selected by the majority voting method. Also, in order to compare the test results with other methods, the results obtained from the average of ۵۰ independent executions of the program were compared with the results of several well-known and widely used algorithms in this field, such as: KNN, Random Forest, Bagging, Decision Tree, Multilayer-Perceptron algorithms. The result of this comparison proved that the proposed method has provided better results than other methods and different categories.کلیدواژه ها
machine learning, Supervised Classifiers, big data problems, link predictionمقالات مرتبط جدید
- نقش شایستگی های هنرآموزان فنی و حرفه ای در توسعه کارآفرینی در بین دانش آموزان
- تحلیل کسبوکار و تحول در مدیریت مالی: نقش داده ها در تصمیمگیری و کارایی عملیاتی
- کیفیات مخففه مجازات در قانون مجازات اسلامی ۱۳۹۲ به عنوان نهاد نوتاسیس و کارایی آن در مدیریت جمعیت کیفری
- چالش های در بکارگیری نهادهای نوتاسیس در قانون مجازات اسلامی با تاکید بر کارایی آنها و تاثیر آنها در زمینه کاهش جمعیت کیفری
- کارایی و تاثیرگذاری نهادهای نوتاسیس در قانون مجازات اسلامی ۱۳۹۲
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.