Electrical Load Forecasting Using a Hybrid Large Margin Nearest Neighbor Method

  • سال انتشار: 1403
  • محل انتشار: مجله مدلسازی و شبیه سازی در مهندسی برق و الکترونیک، دوره: 4، شماره: 1
  • کد COI اختصاصی: JR_MSEEE-4-1_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 95
دانلود فایل این مقاله

نویسندگان

Alieh Ashoorzadeh

Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abbas Toloie Eshlaghy

Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Mohammad Ali Afshar Kazemi

Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

چکیده

Load forecasting is a key component of electric utility operations and planning. Because of today's highly developed electricity markets and rapidly growing power systems, load forecasting is becoming an essential part of power system operation scheduling. This paper proposes a new short-term load forecasting model based on the large margin nearest neighbor (LMNN) classification algorithm to improve prediction accuracy. The accuracy of many classification methods, such as k-nearest neighbor (k-NN), is significantly influenced by the technique used to calculate sample distances. The Mahalanobis distance is one of the most widely used methods for calculating distance. Numerous techniques have been used to enhance k-NN performance in recent years, including LMNN. Our proposed approach aims to solve the local optimum problem of LMNN, compute data similarities, and optimize the cost function that establishes the distances between instances. Before using gradient descent to determine the ideal parameter values for the cost function, we employ a genetic algorithm to shrink the size of the solution space. Additionally, our method's forecasting errors are contrasted with those of the BPNN and ARMA models. The comparative findings show how well the recommended forecasting model performs in short-term load forecasting.

کلیدواژه ها

Short-Term Load Forecasting, Large Margin Nearest Neighbor, Distance learning, Genetic algorithm

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.