Monthly Meteorological Drought Prediction in Iran Using Large-Scale Climatic Indices and Nonlinear Autoregressive Exogenous
- سال انتشار: 1403
- محل انتشار: بیست و یکمین کنفرانس ژئوفیزیک ایران
- کد COI اختصاصی: GCI21_208
- زبان مقاله: انگلیسی
- تعداد مشاهده: 150
نویسندگان
Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan ۴۵۱۳۷–۶۶۷۳۱, Iran
Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan ۴۵۱۳۷–۶۶۷۳۱, Iran
Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan ۴۵۱۳۷–۶۶۷۳۱, Iran
چکیده
Drought, a major global environmental and economic challenge, significantly impacts water resources, agriculture, food production, and socio-economic conditions. Iran, with its predominantly arid and semi-arid climate, faces high risks of severe droughts. This study utilizes large-scale ocean-atmosphere climate indices, including the El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole (DMI), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), and Southern Annular Mode (SAM), over the period from January ۱۹۵۷ to December ۲۰۲۰, which are expected to remotely influence Iran’s climate. Employing the nonlinear autoregressive exogenous (NARX) technique, this research aims to model and forecast monthly drought conditions across ۱۸ regions in Iran. The study combines information from these climate indices to enhance drought forecasting capabilities, using them as predictor variables in a machine learning model to simultaneously simulate and predict monthly Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) drought metrics. Results demonstrate the NARX model's effectiveness in predicting monthly SPI with mean squared errors (MSE) ranging from ۰.۲۶ to ۰.۰۲, and SPEI with MSE ranging from ۰.۷۷ to ۰.۰۱ across the studied regions. This approach, utilizing a comprehensive suite of indices with the NARX model, offers new insights into the influence and relative importance of ocean-atmosphere oscillations on Iran's drought patterns, potentially improving drought forecasting and management strategies in the region.کلیدواژه ها
IRAN DROUGHT PREDICTION, NARX NEURAL NETWORK, SPI, SPEI, OCEAN-ATMOSPHERE CIRCULATIONSمقالات مرتبط جدید
- Experimental study of turbulent mixing in the presence of double-diffusive convection and a brief view of its effect on the melting rate in Antarctica
- The ۲۳ and ۲۴ January ۲۰۲۲ Tabriz earthquakes (NW Iran): Seismological study and seismotectonic implication
- Teleseismic estimates of earthquake source slowness as a measure of near-field ground motion: Seismic hazard in Iran
- Study of the seismic activity effect on the uplift rate of salt domes in the Zagros fold and thrust belt, southern Iran by using the InSAR method
- Study Of The Interaction Between The Solar Wind And Mars
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.