Investigating Seismic Phase Detection and Phase Picking on Iranian Data:through EQTransformer Model.
- سال انتشار: 1403
- محل انتشار: بیست و یکمین کنفرانس ژئوفیزیک ایران
- کد COI اختصاصی: GCI21_205
- زبان مقاله: انگلیسی
- تعداد مشاهده: 114
نویسندگان
M.Sc. student, Department of Geophysics, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
Assistant Professor, Department of Geophysics, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
PhD. student, Department of seismology, International Institute of Earthquake Engineering and Seismology, Bushehr, Iran
چکیده
Seismic phase detection, phase picking, and distinguishing between true seismic signals and noise are critical for earthquake monitoring and the development of accurate earthquake catalogs. Traditional manual methods for identifying P-wave and S-wave arrivals and differentiating them from noise have proven complex, especially given the continuous data recorded by seismic monitoring stations. The emergence of Artificial Intelligence (AI) and Machine Learning (ML) has revolutionized this process, enabling automatic phase detection and phase picking with increased accuracy. EQTransformer, a deep neural network model, provides a comprehensive solution for seismic signal analysis through its multi-task architecture. Incorporating ۱D convolutions, LSTM units, and attention mechanisms, the model processes seismic time-series data, creating high-level representations that facilitate precise detection of earthquake signals and differentiation of P- and S-phases. This study applies EQTransformer to continuous earthquake data recorded by Iranian seismological stations, specifically examining an earthquake in the Malard region of Tehran Province. Results indicate that the model robustly detects seismic signals, achieving a total of ۴۹۳۰۲ detected signals, with ۵۶۶۶۱ P picks and ۵۲۷۷۴ S picks across ۵۲ stations. The attention-based architecture of EQTransformer ensures efficient phase picking and demonstrates significant potential for advancing automated seismic data analysis. This approach optimizes data collection, enhances accuracy, and supports the development of reliable earthquake catalogs essential for geophysical research and seismic monitoring.کلیدواژه ها
Deep learning, detection, Phase picking, EQtransformer, ۱D-CONV, LSTM, LTA/STAمقالات مرتبط جدید
- Experimental study of turbulent mixing in the presence of double-diffusive convection and a brief view of its effect on the melting rate in Antarctica
- The ۲۳ and ۲۴ January ۲۰۲۲ Tabriz earthquakes (NW Iran): Seismological study and seismotectonic implication
- Teleseismic estimates of earthquake source slowness as a measure of near-field ground motion: Seismic hazard in Iran
- Study of the seismic activity effect on the uplift rate of salt domes in the Zagros fold and thrust belt, southern Iran by using the InSAR method
- Study Of The Interaction Between The Solar Wind And Mars
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.