Path-following control for autonomous vehicles utilizing both DDPG and DQN algorithms

  • سال انتشار: 1403
  • محل انتشار: دهمین کنفرانس بین المللی مهندسی صنایع و سیستم­ ها
  • کد COI اختصاصی: ICISE10_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 177
دانلود فایل این مقاله

نویسندگان

Ali Rizehvandi

Faculty of Mechanical Engineering K.N. Toosi University of Technology Tehran, Iran

Shahram Azadi

Faculty of Mechanical Engineering K.N. Toosi University of Technology Tehran, Iran

چکیده

Enhancing autonomous vehicles (AVs) ensures a safe and reliable transportation system. Achieving level ۵ autonomy, as per the Society of Automotive Engineers (SAE) classification, requires AVs to navigate through complex and unconventional traffic environments. Path-following, a key aspect of automated driving, involves guiding a vehicle accurately and safely along a predefined path. Traditional path-following methods often rely on parameter adjustments or rule-based approaches, which may not be suitable for dynamic or intricate environments. Reinforcement learning (RL) has emerged as a promising technique capable of learning effective control strategies from an agent's experiences. This study investigates the effectiveness of the Deep Deterministic Policy Gradient (DDPG) method for controlling acceleration and the Deep-Q Network (DQN) technique for controlling steering in AV path-following. The combination of the DDPG and DQN algorithms together demonstrates rapid convergence, allowing the agent to achieve stable and efficient path-following while maintaining smooth control without excessive actions. The results indicate the efficiency of the new approach, suggesting its potential contribution to the advancement of automated driving technology.

کلیدواژه ها

Autonomous vehicles, RL method, path-following, DDPG, DQN, automated driving

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.