Exploring the Synergistic Anticancer Effects of Iranian Medicinal Plants on EGFR Driven Tumor Cell Lines: Integrative Computational and Molecular Dynamics Study)
- سال انتشار: 1402
- محل انتشار: دوازدهمین همایش ملی و سومین همایش بین المللی بیوانفورماتیک
- کد COI اختصاصی: IBIS12_129
- زبان مقاله: انگلیسی
- تعداد مشاهده: 149
نویسندگان
Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
School of biological sciences, Institute for research in fundamental sciences, Tehran, Iran
Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
چکیده
Chemotherapy, a crucial component in cancer treatment, presents considerable challenges,including high costs, substantial side effects, and variable efficacy. Despite advancements in EGFRtargetedtherapies for EGFR-positive cancers, the persistent challenge of resistance necessitatesinnovative solutions. This study focuses on targeting the epidermal growth factor receptor (EGFR)using compounds derived from Iranian medicinal plants. To efficiently navigate the abundance ofpotential compounds, we employ a computational approach to streamline candidates for laboratoryexperimentation, optimizing resources and accelerating the identification of promising anti-EGFRagents.inspired by the computational methods proposed in three seminal papers by (Ahmadi Moughari et al.,۲۰۲۱; Emdadi et al, ۲۰۲۱; Yassaee Meybodi et al, ۲۰۲۱) our study leverages their methodologies. Weemploy their models to generate outputs, subsequently used as inputs for our deep neural networkdesigned to predict IC۵۰ values of Iranian medicinal plant compounds against EGFR-associated celllines. This integrative approach aims to enhance the predictive accuracy and efficiency of identifyingpotential anti-EGFR agents, contributing to the advancement of cancer treatment strategies.Leveraging the ChemBL database, we meticulously extract the structural features of drugs using RDKit.Incorporating expression and miRNA data as cell line descriptors results in a dataset comprising۱۵۳,۹۱۴ drugs, each characterized by ۳۸ features across ۲۳ unique cell lines. This comprehensiveapproach enables the merging of chemical and biological information, providing a holistic perspectiveon the relationships between compound properties and efficacy against EGFR-associated cell lines.Following the IC۵۰ prediction of natural compounds, our subsequent step involves molecular dockingstudies with the EGFR۱-۴ kinase domain. This analysis evaluates binding affinities and interactions,facilitating the identification of promising compounds. Prioritized candidates undergo moleculardynamics simulations to explore the stability and behavior of the compound-EGFR complexes overtime, offering valuable insights into their structural aspects and potential as anti-EGFR agents.This integrative computational and molecular dynamics approach thoroughly evaluates naturalcompounds, promising a multi-faceted understanding of their potential as effective EGFR inhibitors.Such initiatives significantly contribute to developing cost-effective and efficient strategies fordiscovering novel therapies tailored to EGFR-positive cancers.کلیدواژه ها
Computational methods, molecular docking, molecular dynamics, anti-EGFR agents, natural compoundsمقالات مرتبط جدید
- انتخاب تامین کننده سبز در صنعت غذایی با استفاده از روش تصمیم گیری فازی
- Designing a Smart Oversight Framework for EPC Contracts in the Oil and Gas Sector Based on Blockchain and Smart Contracts
- Investigation the Effect of Support on Energy Absorption Performance for Reinforcing Auxetic Star Metastructures Under Quasi-Static Loading: A Numerical Study
- Enhancing Security at the Intersection of IoT and the Metaverse: A Comprehensive Framework with Federated Learning, Blockchain, and Explainable AI
- استراتژی های مدیریت بحران در سطح کلان و سازمانی حوزه HSE
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.