Predicting Functional miRNA Targets in C-Fos with High Accuracy via Machine Learning
- سال انتشار: 1402
- محل انتشار: دوازدهمین همایش ملی و سومین همایش بین المللی بیوانفورماتیک
- کد COI اختصاصی: IBIS12_066
- زبان مقاله: انگلیسی
- تعداد مشاهده: 173
نویسندگان
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
Farzanegan campus, semnan University, Semnan, Iran
Endocrinology and Metabolism Research Institute (EMRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
چکیده
Introduction: The proto-oncogene C-Fos plays a crucial role in cell proliferation anddifferentiation[۱], yet its intricate control network, particularly involving microRNAs (miRNAs), remains largelyuncharted. This study delves into the possibility of C-Fos harboring encoded miRNA regulatory information,employing machine learning to decipher its miRNA regulatory landscape.Materials and Methods: We compiled diverse datasets encompassing C-Fos expression, miRNA expression, andpredicted miRNA target sites within the C-Fos gene. Utilizing feature engineering techniques, we extractedsequence and positional features surrounding potential target sites. Subsequently, we implemented variousmachine learning algorithms, including random forests and support vector machines, to classify true miRNA targetsites based on these features. We evaluated model performance using cross-validation and compared results acrossalgorithms.Results: Our models achieved high accuracy in identifying true miRNA target sites within the C-Fos gene,exceeding ۸۰% in most cases. By analyzing the learned feature weights, we uncovered key sequence andpositional motifs crucial for miRNA recognition and binding. Interestingly, we identified clusters of enrichedmotifs within the C-Fos gene, suggesting the presence of miRNA regulatory hotspots. Furthermore, we mappedthese hotspots to specific functional domains within C-Fos, revealing a potential link between miRNA regulationand C-Fos function.Conclusions: Our study demonstrates the effectiveness of machine learning in decoding miRNA regulatorynetworks encoded within genes. By applying this approach to C-Fos, we unraveled a complex miRNA regulatorylandscape with hotspots likely linked to specific C-Fos functions. This understanding paves the way for furtherinvestigations into miRNA-mediated control of C-Fos in diverse cellular processes, including cancerdevelopment[۲]. Future research will focus on experimentally validating predicted target sites and elucidating thefunctional consequences of this newly discovered miRNA regulatory network in various biological contexts.کلیدواژه ها
C-Fos; microRNA; miRNA regulatory network; machine learning; target site prediction; cellproliferation.مقالات مرتبط جدید
- توسعه مدل های یادگیری چندعاملی برای هماهنگی خودمختار در سیستم های سایبری-فیزیکی با بهره گیری از تقویت یادگیری عمیق چندعاملی
- پیش بینی تطبیقی احساسات در گفتار چند زبانه با استفاده از مدل های ترنسفورمر چندوجهی و یادگیری انتقالی
- معماری های اصلی شبکه های عصبی عمیق و مقایسه آنها
- Beyond Counsel: The Role of Artificial Intelligence in Transforming Legal Practice and Justice Access
- معماری بهینه برای شبکه حسگر بیسیم با بیشترین کاهش انرژی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.