Comparative Analysis of the Performance of Gridded Precipitation Products Over Iran

  • سال انتشار: 1403
  • محل انتشار: دو فصلنامه تحقیقات سطوح استحصال آب، دوره: 7، شماره: 2
  • کد COI اختصاصی: JR_WHR-7-2_001
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 55
دانلود فایل این مقاله

نویسندگان

Ali Gorjizadeh

Assistant Professor, Department of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Ali Moridi

Associate Professor, Department of Water and Environmental Engineering, Faculty of Civil, Shahid Beheshti University, Tehran,Iran.

چکیده

Precipitation provides the most crucial input for hydrological modeling. Rainfall Estimation from rain gauges is the most common and traditional method have been used widely to measure rainfall at catchment scales. In many developing countries, a dense rain-gauge grid is generally unavailable, suffering from a sparse station distribution at high altitudes or in rural areas. Recent advances in remote sensing technologies have provided precipitation data with high spatial and temporal resolution. Accurate information on the benefits and deficits of these datasets is often lacking, especially over Iran. This study aims to provides a comprehensive evaluation of a good variety of state-of-the art precipitation datasets against ۴۱ synoptic gauge observations, as a reference in the period of ۲۰۱۳ to ۲۰۲۰ over Iran. In particular, the performance of ERA۵ as reanalysis, PERSIANN as satellite based, CHIRPS and PERSIANN-CDR as satellite-gauge precipitation products at daily, monthly and annual scale has been assessed. Statistical metrics, precipitation detection capability and false alarm ratio have been used to measure the accuracy of each product over spatial and time scales. The result show that over annual and daily scale PERSIANN-CDR product outperforms, and over daily scale PERSIANN-CDR and CHIRPS products perform well compared to ERA۵ and PERSIANN products. The CHIRPS and PERSIANN-CDR products deliver reliable and useful ability of precipitation detection comparing to other products.

کلیدواژه ها

Evaluation Indicators, Gridded Datasets, Iran, precipitation estimation

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.