بررسی عملکرد الگوریتم هیبریدی بهینه سازی خرگوش مصنوعی (ANN-ARO) در پیش بینی تبخیر و تعرق مرجع با پارامترهای اقلیمی محدود
- سال انتشار: 1403
- محل انتشار: مجله علمی سامانه های سطوح آبگیر باران، دوره: 12، شماره: 1
- کد COI اختصاصی: JR_JIRCSA-12-1_003
- زبان مقاله: فارسی
- تعداد مشاهده: 213
نویسندگان
Ph.D. Student, Water Engineering Department, Faculty of Agriculture, University of Birjand, Birjand, Iran
Assistant Professor, Department of Computer Engineering, Technical Faculty, University of Torbat Heydarieh, Torbat Heydarieh, Iran
Associate Professor, Water Engineering Department, University of Birjand, Birjand, Iran
چکیده
تبخیر و تعرق مرجع یکی از متغیرهای مهم در هیدرولوژی و علوم کشاورزی و عامل تعیین کننده در مدیریت منابع آب است. این مطالعه به بررسی مدل هیبریدی شبکه عصبی با الگوریتم بهینه ساز خرگوش مصنوعی (ANN-ARO) برای مدل سازی روزانه تبخیر و تعرق مرجع با پارامترهای هواشناسی محدود و مقایسه آن با سایر روش های هیبریدی یعنی شبکه عصبی مصنوعی با الگوریتم بهینه سازی ذرات (ANN-PSO)، شبکه عصبی مصنوعی با الگوریتم ژنتیک گرهی (ANN-GA) و پنج مدل داده کاوی دیگر می پردازد. این مدل ها با استفاده داده های آب وهوایی روزانه بلندمدت از سال ۲۰۰۰ تا ۲۰۲۳ در دو اقلیم متفاوت ارزیابی شدند. ایستگاه های مورد بررسی شامل بیرجند (با اقلیم خشک کویری) و مشهد (با اقلیم نیمه خشک سرد) بود. مقایسه آماری نشان داد که با درنظرگرفتن کلیه پارامترهای اقلیمی مدل هیبریدی ANN-ARO در شهر مشهد با ۹۹۸۶/۰R۲= و ۰۰۰۱/۰ MSE=و در شهر بیرجند با ۹۹۸۶/۰R۲= و ۰۰۰۱/۰MSE= تخمین های بهتری را نسبت به سایر روش ها داشت. هم چنین الگوریتم بهینه سازی ANN_ARO با درنظرگرفتن حداقل پارامتر هواشناسی، به ترتیب با "دما" و "رطوبت نسبی" بهترین تخمین را داشته و هم چنین با درنظرگرفتن دو و سه پارامتر ورودی، عملکرد بهتری نسبت به سایر روش ها دارد. به طورکلی، الگوریتم های بهینه سازی الهام گرفته از طبیعت ابزارهای قوی برای افزایش عملکرد ANN در شبیه سازی ETo هستند و مطابق یافته های این پژوهش، مدل ANN-ARO برای تخمین تبخیر و تعرق مرجع در مناطق اقلیمی مشابه با داده های اقلیمی محدود توصیه می شوند. این مطالعه مدل های قدرتمندی را برای تخمین دقیق ETo با ورودی های محدود در اقلیم های خشک و نیمه خشک پیشنهاد می کند که مفاهیمی عملی برای توسعه کشاورزی دقیق ارائه می دهد.کلیدواژه ها
Reference evapotranspiration, neural network, artificial rabbit optimizer, precision agriculture., تبخیر و تعرق مرجع, شبکه عصبی, بهینه ساز خرگوش مصنوعی, کشاورزی دقیقاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.