شناسایی پهنه های مستعد زمین لغزش با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) مطالعه موردی: شهرستان خلخال
- سال انتشار: 1402
- محل انتشار: فصلنامه کاربرد سنجش از دور و سیستم اطلاعات جغرافیایی در علوم محیطی، دوره: 3، شماره: 9
- کد COI اختصاصی: JR_RSGIES-3-9_004
- زبان مقاله: فارسی
- تعداد مشاهده: 79
نویسندگان
گروه سنجش از دورو GIS دانشگاه تبریز
دانشگاه تبریز
دانشگاه تبریز
چکیده
یکی از مخاطراتی که زیر ساخت های موجود در مناطق مختلف را تهدید می کند، پدیده زمین لغزش است. مطالعه حاضر سعی در شناسایی پهنه های مستعد این پدیده طبیعی در شهرستان خلخال دارد، که با استفاده از روش شبکه عصبی انجام گرفته است. برای این منظور ۹ عامل تاثیر گذار بر لغزش شناسایی و تهیه شدند، لایه لغزش های اتفاق افتاده، از عکس های هوایی و تصاویر ماهواره ای و بازدید های میدانی بدست آمده و با استفاده ازنقاط غیر لغزشی در سطح منطقه، داده های آموزش شبکه عصبی پرسپترون چند لایه را ایجاد کردند. این داده ها به منظور مدلسازی شبکه عصبی، پس از آماده سازی اولیه در محیط نرم افزار ARC GIS ۱۰.۵ به نرم افزار MATLAB ۲۰۱۶ منتقل شده و با استفاده از کد نویسی شبکه عصبی MLP آموزش دیدند تا در مورد داده هایی که با آنها برخورد نداشته اند، پیش بینی انجام دهند. ساختار شبکه عصبی طراحی شده از بین شبکه های بسیاری که ایجاد و آزمایش شدند، ۱-۱۲-۹ انتخاب شد، که ۹ ورودی به تعداد معیار های تاثیرگذار، ۱۲ نورون در لایه میانی و یک نورون و لایه برای خروجی شبکه بدست آمد. نتایج نمودار اعتبار سنجی مدل شبکه عصبی (ROC) نشان دهنده دقت بالای ۹۵ درصدی مدل ایجاد شده در پیش بینی پیکسل های لغزشی است. بر طبق نتایج حاصله ۵۷/۰، ۱۱/۰، ۰۷/۰ ، ۰۶/۰ و ۱۷/۰ درصد از منطقه مورد مطالعه به ترتیب در کلاس های بسیار زیاد، زیاد، متوسط، کم و خیلی کم قرار گرفتند.کلیدواژه ها
زمین لغزش, شبکه عصبی مصنوعی, نمودار منحنی ROC, شهرستان خلخالاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.