3D MRI brain segmentation based on MRF and hybrid of SA and IGA
- سال انتشار: 1389
- محل انتشار: هفدهمین کنفرانس مهندسی پزشکی ایران
- کد COI اختصاصی: ICBME17_086
- زبان مقاله: انگلیسی
- تعداد مشاهده: 1561
نویسندگان
Department of Computer Engineering and IT Shahrood University of Technology Shahrood, Iran
Department of Computer Engineering and IT Shahrood University of Technology Shahrood, Iran
Department of Computer Engineering Alzahra University Tehran, Iran
چکیده
This paper proposes a novel combinational approach for statistical de-noising and segmentation of 3D magneticresonance images (MRIs) of the brain. The proposed method is based on Markov Random Field (MRF), conjunction with simulated annealing (SA) and improved genetic algorithm (IGA). MRF methods have been widely studied for segmentation. Despite the Markovianity which depicts the local characteristic, which allows a global optimization problem to be solved locally, MRF still has a heavy computation burden, especially when it isused with stochastic relaxation schemes such as SA. Although, search procedure of SA is fairly localized and prevents from exploring the same diversity of solutions, it suffers from several limitations. In comparison, GA has a good capability of global researching but it is weak in hill climbing. Therefore, the combination of these two methods may have the advantages of both procedures while alleviating their individual shortcomings and high computation complexity. Evaluation of proposed approach shows that our algorithm outperforms the traditionalMRF in both convergence speed and solution quality.کلیدواژه ها
Magnetic Resonance Imaging; Markov Random Field (MRF); Simulated Anealing; Improved Genetic Algorithmمقالات مرتبط جدید
- ارزیابی اقتصادی و زیست محیطی سناریوهای ترکیب انرژی تجدیدپذیر در برنامه ریزی تولید برق ایران تا افق ۱۴۱۰
- بررسی فناوریها و استراتژیها برای بهینه سازی مصرف انرژی و افزایش کارایی در شبکه های توزیع
- فناوری اطلاعات و ارتباطات سبز
- Hoo Controller Design for a Quadruple-Tank Multivariable System: Robust Performance via Weighted Sensitivity Shaping
- تاثیر حیاتی همبستگیهای آماری ضعیف بادبار بر قابلیت اطمینان سیستمهای قدرت: دیدگاهی فراتر از مدلهای سنتی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.