Positioning Soccer Players for Success: A Data-Driven Machine Learning Approach

  • سال انتشار: 1402
  • محل انتشار: مجله ریاضیات محاسباتی و مدلسازی کامپیوتری با کاربردها، دوره: 2، شماره: 1
  • کد COI اختصاصی: JR_CMCMA-2-1_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 162
دانلود فایل این مقاله

نویسندگان

Mahdi Nouraie

Department of Statistics, Shahid Beheshti University, Tehran, Iran

Changiz Eslahchi

Department of Computer and Data Sciences, Shahid Beheshti University, Tehran, Iran

چکیده

Determining a player's proper position in football is critical for maximizing their impact on the field. In this study, we propose a scientific and analytical approach to address this issue using machine learning models. We use the FIFA dataset to identify the correct positions for players and show that the logistic regression model provides the most accurate predictions, with an average accuracy of ۹۹.۸۴\% on test data across the all positions. To further refine player positioning, we use the Recursive Feature Elimination (RFE) method to identify the most important features associated with each position. The top five features identified through RFE are used to evaluate players' suitability for their correct positions and we illustrate that the average Mean Squared Error (MSE) is ۱.۱۶۶ on a scale of ۱۰۰, indicating high accuracy in predicting their suitability scores. Overall, our results suggest that the logistic regression model is an effective tool for accurately determining player positions, and that the selected features can be used to evaluate players' suitability for a given position with high accuracy. Our approach provides a data-driven solution to help teams make better decisions in player selection and positioning, potentially leading to improved team performance and success.

کلیدواژه ها

Football tactical analysis, Team formation, Player positioning, Football team composition, Machine learning

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.