Estimating Causal Effect of Two-Dose COVID-۱۹ Vaccination on Hospitalization with Machine Learning Techniques: A Propensity Score Matching Approach
- سال انتشار: 1403
- محل انتشار: اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده
- کد COI اختصاصی: DSAI01_072
- زبان مقاله: انگلیسی
- تعداد مشاهده: 203
نویسندگان
Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
چکیده
In this innovative study, researchers investigated the effectiveness of two-dose COVID-۱۹ vaccination in reducing hospitalization amidst the complex confounding factors present in observational studies. Propensity scores have become increasingly popular for adjusting confounding variables in such studies. While propensity score methods offer theoretical advantages over traditional covariate adjustment methods, their performance in real-world situations remains poorly understood. By employing. Subsequent analysis revealed a significant balance between the vaccinated and unvaccinated groups. The results obtained from both Multiple Logistic Regression and Propensity Score Matching methods indicated that vaccinated individuals were less likely to be hospitalized [adjusted odds ratio (OR), ۹۵% CI using logistic regression: ۰.۲۱ (۰.۱۹, ۰.۳۰), and estimated by propensity score matching using logistic regression and GBM respectively: ۰.۷۲ (۰.۷۰, ۰.۷۴) and ۰.۹۳ (۰.۹۱,۰.۹۵). These findings not only emphasize the effectiveness of vaccination but also underscore the need for a meticulous approach when assessing real-world impacts in complex data environments.کلیدواژه ها
propensity score matching; causal effect; observational study; GBM; logistic regressionمقالات مرتبط جدید
- Artificial intelligence-based Diagnostic Approaches for Alzheimer's Disease Using Medical Imaging
- Artificial Intelligence-Based Telehealth Care in maternal health
- سیستم های هوش مصنوعی در پیشگیری و ارتقای سلامت عمومی
- Efficient Multi-Label Retinal Disease Classification with CLIP, LoRA, and Shadow Loss on the OIA-ODIR Dataset
- هوش مصنوعی در ژنتیک
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.