Data Fusion in on-line tool wear estimation monitoring using wavelet transform and artificial neural networks

  • سال انتشار: 1391
  • محل انتشار: کنفرانس بین المللی مدل سازی غیر خطی و بهینه سازی
  • کد COI اختصاصی: ICNMO01_303
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1227
دانلود فایل این مقاله

نویسندگان

R Askari

Islamic Azad University of Semnan ,Department of Mechanical Engineering, Semnan, Iran

Mohammad Jafar Ostad Ahmad Ghorabi

Islamic Azad University of Semnan ,Department of Mechanical Engineering, Semnan, Iran

N Askari

Faza Applied Science and Technology Education Center, Amol, Mazandaran, Iran

چکیده

It is known that the force sensor signal in a turning process is sensitive to the gradually increasing tool wear. Based on this fact, this paper investigates a tool wear assessmenttechnique in turning through force signals. In this paper we applied wavelet analysis for tool condition monitoring (TCM). Wavelet analysis has been the most important nonstationarysignal processing tool today, and popular in machining sensor signal analysis.Based on the nature of monitored signals, wavelet approaches are introduced and the superiorities of wavelet analysis to Fourier methods are discussed for TCM. According tothe multiresolution, sparsity and localization properties of wavelet transform, literatures are reviewed in three categories in TCM: time–frequency analysis of machining signal, feature extraction, and estimation tool wear. A neural network architecture similar to a standardone-hidden-layer feed forward neural network is used to relate sensor signal measurements to tool wear classes. A novel training algorithm for such a network is developed. Theperformance of this new method is compared with a previously developed tool wearassessment method which uses a separate feature extraction step. The proposed wavelet network can also be useful for developing signal interpretation schemes for manufacturing process monitoring, critical component monitoring, and product quality monitoring

کلیدواژه ها

Tool condition monitoring; Cutting force; Wavelet transform; Artificial neural networks

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.