استفاده از دسته بندهای تجمیعی برای دادههای نامتوازن و کاربرد آنها در دادههای مامایی

  • سال انتشار: 1391
  • محل انتشار: دومین کنفرانس ملی مهندسی نرم افزار دانشگاه آزاد لاهیجان
  • کد COI اختصاصی: LNCSE02_072
  • زبان مقاله: فارسی
  • تعداد مشاهده: 1026
دانلود فایل این مقاله

نویسندگان

چکیده

در این مقاله، مسئله یادگیری دادههای بهشدت نامتوازن، مورد مطالعه قرار گرفته است. دادههای نامتوازن به این معناست که دستههای هدف از دادهها در جدول توزیع منحرف میشوند؛ حداقل، نمونههای یک دسته بهطور قابل توجهی بیشتر از دستههای دیگر وجود دارد. روشهای دستهبندی سنتی، بهدنبال بهحداقلرساندن میزان کلی خطا از کل مجموعهی آموزش، بر روی دادههای نامتوازن بهخوبی عمل نمیکند، زیرا آنها معمولاً فرض میکنند توزیع یک کلاس نسبتاًمتوازن است و انرژی زیادی بر روی یادگیری دادههای نامتوازن کلاس اکثریت میگذارند که این موضوع اهمیت زیادی دارد و در بسیاری از برنامههای کاربردی چالشبرانگیز است. مجموعه داده مورد استفاده در این مقاله از 7272 نوزاد که در بیمارستان شهید رجایی شهرستان آران و بیدگل استان اصفهان که در بین سال های 1832 و 1837 متولد شدهاند، جمعآوری شده است. بهطور کلی، برخورد با کلاس اقلیت نیاز به مفاهیم جدید، بررسیها و راهحلهایی بهمنظور درک کامل از مدلهای اساسی پیچیده دارد. در این مقاله، توجه بخصوصی به مسئله دستهبندی دودویی نامتوازن شده است و چندین روش یادگیری تجمیعی موثر برای حل این مسئله پیشنهاد شده است

کلیدواژه ها

داده های نامتوازن، داده های مامایی، دسته بندی، روشهای تجمیعی

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.