مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)

  • سال انتشار: 1389
  • محل انتشار: مجله تحقیقات آب و خاک ایران، دوره: 41، شماره: 2
  • کد COI اختصاصی: JR_IJSWR-41-2_008
  • زبان مقاله: فارسی
  • تعداد مشاهده: 142
دانلود فایل این مقاله

نویسندگان

فریدون سرمدیان

روح اله تقی زاده مهرجردی

حسین محمد عسگری

علی اکبرزاده

چکیده

با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگی های خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده می شود. بدین منظور، در این پژوهش۱۴۰ نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگی های زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگی های دیریافت اندازه گیری شدند. سپس کل داده ها به دو سری داده، شامل سری آموزش (۸۰% داده ها) و سری ارزیابی (۲۰% داده ها) تقسیم گردید. به منظور پیش بینی خصوصیات مذکور، از مدل های نروفازی، شبکه عصبی مصنوعی و رگرسیون چند متغیره استفاده گردید. نتایج ارزیابی مدل ها بر اساس شاخص های ریشه مربعات خطا، میانگین خطا، خطای استاندارد نسبی و ضریب تبیین نشان داد که مدل نروفازی دارای بالاترین دقت در پیش بینی ویژگی های خاک را دارا می باشد بطوریکه این مدل به میزان ۳۴، ۱۰، ۷۸ و ۵ درصد دقت پیش بینی ویژگی های FC، PWP، CEC و Bd را به ترتیب، نسبت به روش رگرسیون خطی چندگانه افزایش داده است. بعد از این مدل، شبکه های عصبی مصنوعی نسبت به معادلات رگرسیونی کارائی بهتر داشته است.

کلیدواژه ها

., . ., Artificial Neural Network, multivariate regression, neuro-fuzzy

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.