COVID-۱۹ Prediction Classifier Model Using Hybrid Algorithms in Data Mining

  • سال انتشار: 1400
  • محل انتشار: مجله بین المللی کودکان، دوره: 9، شماره: 1
  • کد COI اختصاصی: JR_INJPM-9-1_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 179
دانلود فایل این مقاله

نویسندگان

Morteza Nikooghadam

Assistant Professor, Department of Computer Engineering and Information Technology, Imam Reza International University, Mashhad, Iran.

Adel Ghazikhani

Assistant Professor, Department of Computer Engineering and Information Technology, Imam Reza International University, Mashhad, Iran.

Mohammad Saeedi

MS Student, Department of Computer Engineering and Information Technology, Imam Reza International University, Mashhad, Iran.

چکیده

Increase of stored data in medical databases needs allocative tools to get access to data, data mining, discover knowledge and efficient use of data. Medical and treatment fields are two examples of data mining tools to analyze massive data and predictive modelling. In medical sciences, prediction and precise-quick detection of multiple diseases has to reduced exprense and also save people’s lives. Group based methods (Ensemble Methods) are approaches that use hybrid models to recover classification. Coronavirus (COVID-۱۹) has killed many people around the world so far, and this could be a good reason to present a new model for diagnosing the disease using data mining algorithms. This research presents a hybrid model of basic data mining and hybrid algorithms according to information in medical and laboratory records of patients suffering Covid-۱۹ in Emam-Reza (AS) hospital in Mashhad, Iran, to diagnose the sickness. The proposed method uses Ensemble base (hybrid) classifiers, where the general model can be used to provide diagnoses with higher precision rather than classifiers. To execute the proposed model, data mining tools including Rapid Miner ۹.۷ and Python ۳.۷ were used. This study used stacking classifiers composed of basic algorithms including simple baze, decision tree, K- nearest neighborhood backup vector machine for basic section and uses chaos jungle algorithm in stack section that has gained ۸۶.۵% accuracy for diagnosis of Covid-۱۹.

کلیدواژه ها

Accuracy, COVID-۱۹, Classifier model, Data mining, Hybrid data mining

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.