Deep Learning-Based Approach for Classification Of Mental Tasks From Electroencephalogram Signals

  • سال انتشار: 1402
  • محل انتشار: فصلنامه فیزیولوژی عصبی روانشناسی، دوره: 10، شماره: 1
  • کد COI اختصاصی: JR_AJNPP-10-1_001
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 112
دانلود فایل این مقاله

نویسندگان

Evin Şahin Sadık

Kütahya Dumlupinar University, Faculty of Engineering Dept. of Electrical Electronics Eng., Kütahya, Turkey.

Hamdi Melih SARAOĞLU

Kütahya Dumlupinar University, Faculty of Engineering Dept. of Electrical Electronics Eng., Kütahya, Turkey.

Sibel Canbaz Kabay

Kütahya Health Sciences University, Faculty of Medicine, Dept. of Neurology, Kütahya, Turkey

Cahit Keskinkılıç

Department of Psychology, İstanbul Gedik University, İstanbul, Turkey.

چکیده

Background and Objective: Electroencephalography (EEG) analysis is an important tool for neuroscience, brain-computer interface studies, and biomedical studies. The primary purpose of Brain-Computer Interface (BCI) studies is to establish communication between disabled individuals, other individuals, and machines with brain signals. Interpreting and classifying the brain's response during different cognitive tasks will contribute to brain-computer interface studies. Therefore, in this study, five cognitive tasks were classified from EEG signals. Material and Methods: In this study, five neuropsychological tests (Öktem Verbal Memory Processes Test, WMS-R Visual Memory Subtest, Digit Span Test, Corsi Block Test, and Stroop Test) were administered to ۳۰ healthy individuals. The tests assess the volunteers' abilities in verbal memory, visual memory, attention, concentration, working memory, and reaction time. The EEG signals were recorded while the tests were administered to the volunteers. The tests were classified using two different deep learning algorithms, ۱D Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), from the recorded EEG signals. Results: When the success of the tests was evaluated, classification success was achieved with an accuracy of ۸۸.۵۳% in the CNN deep learning algorithm and ۸۹.۸۰% in the LSTM deep algorithm. Precision, recall, and F۱-score values for CNN were calculated at ۰.۸۸, ۰.۸۷, and ۰.۸۷, respectively, while precision, recall, and f۱-score values for the LSTM network were obtained at ۰.۹۰, ۰.۸۹, and ۰.۸۹. Conclusion: Following the findings of the present study, five different cognitive tasks were able to be classified with high accuracy from EEG signals using deep learning algorithms.

کلیدواژه ها

Classification, Cognitive task, Deep learning, EEG, Working memory

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.