Study and meta-analysis on the degree of malignancy in prostate and breast cancer and its accurate diagnosis using deep neural network
- سال انتشار: 1402
- محل انتشار: هفتمین کنفرانس بین المللی پژوهش های کاربردی در علوم و مهندسی
- کد COI اختصاصی: CARSE07_220
- زبان مقاله: انگلیسی
- تعداد مشاهده: 149
نویسندگان
Master of Biology, Biochemistry, Payam Noor University, Mashhad Center Branch, Mashhad, Razavi Khorasan Province, Iran
چکیده
Cells are the basic units that make up the human body. Cells grow and divide to make new cells as the body needs them. Usually, cells die when they get too old or damaged. Then, new cells take their place. Cancer begins when genetic changes interfere with this orderly process. Cells start to grow uncontrollably. These cells may form a mass called a tumor. A tumor can be cancerous or benign. A cancerous tumor is malignant, meaning it can grow and spread to other parts of the body. A benign tumor means the tumor can grow but will not spread. Possible signs and symptoms include a lump, abnormal bleeding, prolonged cough, unexplained weight loss, and a change in bowel movements. While these symptoms may indicate cancer, they can also have other causes. Over ۱۰۰ types of cancers affect humans. In recent years, interest in research into the application of intelligent algorithms for diagnosis and categorization of diseases, especially cancer has increased dramatically. Tumor classification is an important task in medical diagnosis. Technological calculations are important due to their classification function in diagnosis of medical illnesses. Diagnosing and classifying medical images is a challenging task. To detect the malignancy of prostate cancer and the opioid or malignant breast cancer, deep neural network classifier, which is based on Tensor flow framework and Keras library, is used. In the training phase, educational images are considered along with the output class for the network. During training, the weight of the filter is updated every time. However, after several replications, optimal weights are updated and the network is trained to extract the best feature from the images. In this research, the proposed method due to using deep neural network and accurate feature extraction provides detection accuracy about ۹۵.۸۳% and ۹۹.۵% for breast and prostate cancers, respectively, which is more than ۷% compared to other methods. Cancer is one of the most prevalent diseases in the world. Cancer is started from the cells, which are the basic building blocks making the tissue. One of the challenges in medical diagnostic techniques is the difficulty in analyzing dense tissues.کلیدواژه ها
Deep learning, Prostate cancer, Breast cancer, Feature extraction.مقالات مرتبط جدید
- ارزیابی بکار گیری تطبیقی نقاشی دیواری سنتی و گرافیتی با تاکید بر فضاهای شهری بیرجند
- تحلیل الگوهای توسعه شهری و تاثیرات زیست محیطی در شهر جدید پردیس با ارزیابی نیازهای زیرساختی و بهینه سازی برنامه ریزی آمایشی
- بررسی نحوه بهره برداری از الگوریتم های یادگیری عمیق در پیش بینی میزان تولید در کارخانه آسفالت شهرداری ارومیه
- واکاوی نقش شهرداری در تحقق شهر هوشمند
- طراحی شهری هویت محور: رویکردها و راهکارهای تقویت حس مکان
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.