Asurvey: Generative adversarial networks and their applications in medical imaging: an overview from computer science perspective
- سال انتشار: 1401
- محل انتشار: هفتمین کنفرانس بین المللی پژوهش های کاربردی در علوم پایه، مهندسی و تکنولوژی
- کد COI اختصاصی: CONFITC07_038
- زبان مقاله: انگلیسی
- تعداد مشاهده: 360
نویسندگان
PhD student in Artificial Intelligence, Department of Engineering, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
Faculty of Engineering, University of Maragheh, P.O. Box ۵۵۱۳۶-۵۵۳, Maragheh, Iran
چکیده
The lack of high-quality annotated medical image datasets is a major problem colliding with and hindering the growth of applications acquiring engines in the field of medical image analysis. In biomedical image analysis, the applicability of deep acquisition methods is directly influenced by the wealth of accessible image information. This is because the deep acquisition version requires a large image dataset to perform well. Generative Adversarial Networks (GANs) are widely used to remove data limitations in the generation of artificial biomedical images. As already mentioned, the artificial image is built by the feedback received. A discriminator is a pattern that artificially or realistically classifies an image and provides feedback to the generator. A general study is carried out on GANs network application to medical image segmentation, primarily adopted to several GANs-based versions, performance metrics, less operates, datasets, augmentation methods, money performance, and source codes. Secondly, this money offers a comprehensive overview of GANs network applications in different human diseases segmentation. We complete our research with vital discussion, limitations of GANs, and prepositions for coming directions. We hope this study is helpful and increases the sensitivity of GANs network implementations for biomedical image segmentation missions.کلیدواژه ها
Generative adversarial network, GANs applications, Artificial Intelligenceمقالات مرتبط جدید
- ارتقای امنیت و حریم خصوصی اینترنت اشیا: نقش انقلابی فناوری های بلاک چین
- طراحی متدولوژی های ترکیبی (Hybrid) در هوش مصنوعی برای حل مسائل پیچیده
- بهینه سازی سلسله مراتبی جریان ترافیک در محیط های شهری با استفاده از یک چارچوب ترکیبی مبتنی بر سیستم های چندعامله، یادگیری عمیق و یادگیری تقویتی
- بهینه سازی یادگیری فدرال در سیستم های رایانش لبه موبایل: مروری جامع بر چالش ها، راه حل ها و کاربردهای نوظهور
- فناوری اطلاعات و ارتباطات سبز
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.