Modeling and Predicting the Important Properties of the PVC/Glass Fiber Composite Laminates in the Production Process by the TLBO-ANFIS Approach
- سال انتشار: 1400
- محل انتشار: مجله شکل دهی مواد، دوره: 8، شماره: 4
- کد COI اختصاصی: JR_IJMF-8-4_007
- زبان مقاله: انگلیسی
- تعداد مشاهده: 485
نویسندگان
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
School of Mechanical Engineering and Automation, Beihang University, Beijing, China
چکیده
In this paper, by considering the temperature, time, and process pressure, as the most important factors in producing the thermoplastic composites, an experimental design was performed. An adaptive neuro-fuzzy inference system (ANFIS) was utilized to estimate the important characteristics containing flexural strength, porosity volume ratio, fiber volume ratio, and flexural modulus. Then, the parameters of the ANFIS network were optimized by the teaching-learning-based optimization (TLBO) algorithm. For the purpose of modeling material behavior in the process, the experimental results were utilized for the training and validation of the adaptive inference system. The accuracy of the obtained model has been investigated by using different graphs, based on the statistical criteria of the mean absolute error, correlation coefficient, mean square error, and the percentage of mean absolute error. Based on the obtained results, the TLBO-ANFIS approach has been very effective in estimating the above-mentioned properties in the production process. The network error for estimating flexural strength, porosity volume ratio, fiber volume ratio, and flexural modulus in the teaching section was equal to ۰.۱۵۹%, ۰.۰۰۰۳%, ۱.۰۷۴%, and ۰.۰۰۰۱%, and the corresponding values were equal to ۰.۸۵۲%, ۴۲.۴۱۳%, ۳۳.۹۵%, and ۴.۸۹۴% in the testing section.کلیدواژه ها
Thermoplastic composites, ANFIS network, Teaching-learning-based algorithm, Hot pressاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.