Evaluation of Interpolation Techniques for Estimating Groundwater Level and Groundwater Salinity in the Salman Farsi Sugarcane Plantation

  • سال انتشار: 1400
  • محل انتشار: فصلنامه علوم و مهندسی آبیاری، دوره: 44، شماره: 2
  • کد COI اختصاصی: JR_JISE-44-2_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 332
دانلود فایل این مقاله

نویسندگان

Atefeh Sayadi Shahraki

Ph.D. of Irrigation and Drainage Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz. Ahvaz, Iran.

Saeed Boroomand-Nasab

Associate Professor of Irrigation and Drainage Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz. Ahvaz, Iran

Abd Ali Naseri

Associate Professor of Irrigation and Drainage Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz. Ahvaz, Iran.

Amir Soltani Mohammadi

Associate Professor of Irrigation and Drainage Department, Faculty of Water and Enviromental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

چکیده

Due to the essential role of groundwater resources as useable and depleting water resources, the study and management of groundwater exploitation are of great importance. Proper management of groundwater resources needs knowledge of the spatial variability of groundwater level and groundwater salinity over the study area. To obtain such information, appropriate interpolation and mapping of groundwater level and groundwater salinity based on a limited number of observations is needed. The purpose of the present study is to evaluate Ordinary Kriging and IDW interpolation techniques for estimating groundwater level and groundwater salinity in Salman Farsi Sugarcane Plantation (West of Iran). The results showed that the prediction accuracy of the Ordinary Kriging model for groundwater level and groundwater salinity parameters was higher than the IDW model. To this aim, the Root Mean Square Error (RMSE) value was calculated to simulate the groundwater level in Ordinary Kriging and IDW method by ۱.۰۲ and ۲.۱۴, respectively, and to simulate the salinity of groundwater by ۱.۴۵ and ۲.۷۹. Due to the acceptable accuracy of the results of the Kriging model, planners can, by updating the data of this model, use it to predict the quantity and quality of groundwater parameters.

کلیدواژه ها

IDW, Interpolation, Groundwater level, Groundwater Salinity, Kriging

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.