مدل سازی درصد کاهش هد جریان غلیظ نمکی با استفاده از هوش مصنوعی

  • سال انتشار: 1400
  • محل انتشار: فصلنامه مدیریت آب و آبیاری، دوره: 11، شماره: 2
  • کد COI اختصاصی: JR_JWIM-11-2_005
  • زبان مقاله: فارسی
  • تعداد مشاهده: 533
دانلود فایل این مقاله

نویسندگان

مهدی درخشان نیا

دانشجوی دکتری، گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی نجف آباد، نجف آباد، ایران.

مهدی قمشی

استاد، گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

سید سعید اسلامیان

استاد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران و گروه مهندسی عمران، واحد نجف آباد ، دانشگاه آزاد اسلامی ، نجف آباد، ایران

سید محمود کاشفی پور

استاد، گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

جریان غلیظ یکی از مهمترین عوامل در فرآیند رسوب گذاری سدها می باشد. چون این جریان از عوامل موثر بر کاهش کارایی عمر سدهای بزرگ بوده، بنابراین درک الگوهای رسوب گذاری جهت مدیریت مخزن سدها بسیار کارآمد می باشد. براین اساس در این تحقیق درصد کاهش هد جریان غلیظ نمکی تحت تاثیر موانع نفوذپذیر ذوزنقه ای شکل (پر شده با دانه-های شن با قطر ۰.۵ سانتی متر)، با در نظر گرفتن متغیرهایی همچون دبی، شیب، غلظت و ارتفاع موانع به صورت آزمایشگاهی مورد بررسی قرار گرفت، براساس نتایج حاصله اقدام به مدل سازی هد جریان غلیظ نمکی با روش شبکه عصبی مصنوعی پیش خور و روش کلاسیک رگرسیون چند متغیره شد و کارکرد این دو روش مورد مقایسه قرار گرفت. نتایج نشان داد که روش هوشمند شبکه عصبی مصنوعی پیش خور در مدل سازی درصد کاهش هد جریان غلیظ نمکی نسبت به روش رگسیون چند متغیره برتری قابل توجهی دارد.

کلیدواژه ها

جریان غلیظ, درصد کاهش هد, رگرسیون چندمتغیره, شبکه عصبی پیش خور

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.