ارزیابی خطای MAE در پیش بینی دمای سیستم های چندهسته ای مبتنی بر یادگیری عمیق و شبکه کانولوشن
- سال انتشار: 1399
- محل انتشار: کنفرانس بین المللی پژوهشهای نوین در مهندسی برق،کامپیوتر، مکانیک و مکاترونیک در ایران و جهان اسلام
- کد COI اختصاصی: ICECM01_034
- زبان مقاله: فارسی
- تعداد مشاهده: 589
نویسندگان
کارشناسی ارشد رشته مهندسی کامپیوتر هوش مصنوعی و رباتیکز،دانشکده فنی و مهندسی،دانشگاه آزاد اسلامی قوچان
دکترا تخصصی مهندسی کامپیوتر,دانشگاه صنعتی شاهرود
چکیده
پردازنده های چندهسته ای، راه حلی برای تولید پردازنده هایی با عملکرد بالا و البته اجرا در فرکانس های پایین تر است. در سال های اخیر، دمای بالا و توان مصرفی زیاد در پردازنده های چندهسته ای به یک چالش اساسی برای سازندگان و کاربران این پردازنده ها تبدیل شده است. با رشد دمای پردازنده، هزینه های خنک سازی و مصرف توان افزایش یافته و طول عمر پردازنده کاهش می یابد. با افزایش دادن تعداد هسته های پردازنده، دمای آنها افزایش می یابد. برای جلوگیری از افزایش دمای پردازنده از حد آستانه، روش های مدیریت دما مورداستفاده قرار می گیرند. در این پژوهش، یک مدل ترکیبی از یادگیری عمیق و شبکه کانولشن برای پیش بینی دما پیشنهاد شده است. برای آموزش مدل یشنهادی، مجموعه داده هایی ایجاد کرده که شامل تنوع بالایی از تغییرات دمایی پردازنده است. برخی از ویژگیه ای مجموعه داده، با استفاده از حسگرهای دمایی و شمارنده های کارایی سیستم و تعدادی دیگر از ویژگی ها با استفاده از پردازش های پیشنهادی تولید می گردندکلیدواژه ها
سیستم چندهسته ای، مدیریت پویا دما، یادگیری عمیق، شبکه کانولشنمقالات مرتبط جدید
- سودآوری مشتریان در خردهفروشی قطعات یدکی ماشین آلات راهسازی با رویکرد یادگیری ماشین
- ارائه روشی کارآمد جهت شناسایی کودکان نیازمند به پیوند مغز استخوان با استفاده از ترکیب طبقه بند ماشین بردار پشتیبان و الگوریتم بهینه سازی فاخته
- استخراج بهینه پارامترهای تاثیر گذار الگوریتم بهینه سازی بوفالوی آفریقایی با هدف استخراج ویژگی های مهم به منظور افزایش کارایی طبقه بندی داده ها
- ارائه روشی کارآمد برای بهبود عملکرد الگوریتم بهینه سازی کلاغ سیاه به منظور افزایش صحت خوشه بندی داده ها
- استفاده از الگوریتم باور بیزین در لایه کاملا متصل شبکه عصبی کانولوشن با هدف افزایش دقت تشخیص تصاویر
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.