An Efficient Economic-Statistical Design of Simple Linear Profiles Using a Hybrid Approach of Data Envelopment Analysis, Taguchi Loss Function, and MOPSO

  • سال انتشار: 1399
  • محل انتشار: دوفصلنامه بهینه سازی در مهندسی صنایع، دوره: 13، شماره: 1
  • کد COI اختصاصی: JR_JOIE-13-1_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 909
دانلود فایل این مقاله

نویسندگان

Maryam Fazelimoghadam

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Mohammad Javad Ershadi

Department of Information Technology, Iranian Research Institute for Information Science and Technology (IRANDOC), Tehran, Iran

Seyed Taghi Akhavan Niaki

Department of Industrial Engineering , Sharif University of Technology, Tehran, Iran

چکیده

Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the implementation costs. Then, this function is extended by the Taguchi loss function to involve intangible costs. Next, a multi-objective particle swarm optimization (MOPSO) method is employed to optimize the extended model. The parameters of the MOPSO are tuned using response surface methodology (RSM). In addition, data envelopment analysis (DEA) is employed to find efficient solutions among all near-optimum solutions found by MOPSO. Finally, a sensitivity analysis based on the principal parameters of the cost function is applied to evaluate the impacts of changes on the main parameters. The results show that the proposed model is robust on some parameters such as the cost of detecting and repairing an assignable cause, variable cost of sampling, and fixed cost of sampling.

کلیدواژه ها

Economic-statistical design, Linear profiles, Quadratic loss function, Data Envelopment Analysis (DEA), MOPSO, Response Surface Methodology (RSM)

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.